

SPS TECHNOLOGIES - ABINGTON PA OUTFALL SAMPLING RESULTS REPORT FOR JUNE 16, 2025

PREPARED FOR:

SPS TECHNOLOGIES

PREPARED BY:

TRC Environmental Corporation, Inc 1617 JFK Boulevard, Suite 510 Philadelphia, PA 19103

TABLE OF CONTENTS

		Page No.
1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	3
2.1	Background	3
3.0	STORMWATER INVESTIGATION	4
3.1	OUTFALL SAMPLING METHODOLOGY	4
3.2	Outfall Sampling	4
3.3	Outfall Sampling Results	4
4.0	DATA QUALITY ASSURANCE/QUALITY CONTROL MANAGEMENT	6
4.1	FIELD QUALITY ASSURANCE/QUALITY CONTROL REQUIREMENTS.	
4.2	ANALYTICAL QA/QC SAMPLES	
4.3	DATA EVALUATION	
4.4	References	6

Figures

Figure 1: On-Site Investigation Surface Water and Outfall Sampling Locations

Table

Table 1: Outfall Analytical Results

Appendices

Appendix A: Surface Water/Outfall Field Information Form

Appendix B: Data Validation Report

Appendix C: Laboratory Analytical Report

1.0 EXECUTIVE SUMMARY

TRC Environmental Corporation (TRC), on behalf of SPS Technologies Abington PA (SPS), collected one outfall sample in general accordance with TRC Surface Water and Outfall Sampling Plan revised on March 25, 2025 (Sampling Plan). There was a deviation from the Sampling Plan associated with the sampling time due to a non-forecasted qualifying rainfall event occurring the morning of June 15, 2025. The sample was collected on June 16, 2025 and submitted to a Pennsylvania-certified analytical laboratory for analysis. The sample location is shown in the attached **Figure 1** and the results of the analysis are shown below. No sheet flow sample was collected due to lack of flow.

Outfall		Outfall 006	Outfall 006 (Duplicate)
Parameter	Units	Result	Result
Volatile Organic Compounds			
Toluene	mg/L	ND	ND
2-Butanone (MEK)	mg/L	ND	ND
General Chemistry			
Chromium, Trivalent	mg/L	ND	ND
Chromium, Hexavalent	mg/L	ND	ND
Total Cyanide	mg/L	ND	ND
Free Cyanide	mg/L	ND	ND
Oil & Grease	mg/L	ND	ND
Total Suspended Solids	mg/L	ND	ND
Nitrate/Nitrite as Nitrogen	mg/L	4.0	4.0
Chemical Oxygen Demand	mg/L	ND	ND
Total Metals			
Total Aluminum	mg/L	0.00952 J	0.00917 J
Total Chromium	mg/L	0.00133	ND
Total Copper	mg/L	0.00094 J	0.00118
Total Iron	mg/L	0.09159	0.07860
Total Lead	mg/L	ND	ND
Total Nickel	mg/L	0.00125 J	0.00124 J
Total Zinc	mg/L	0.00795	0.00795
Dissolved Metals			
Dissolved Chromium	mg/L	ND	0.0002 J
Dissolved Nickel	mg/L	0.0011 J	0.0011 J
Total Hardness			
Hardness	mg/L	192.6	190.8
Field Parameters			
рН	SU	7.95	7.95

A detailed description of the sampling procedure, results, and data evaluation are included in this Sampling Report. The laboratory data validation reports and the complete laboratory analytical report, including Quality Assurance/Quality Control (QA/QC) are attached.

2.0 INTRODUCTION

This Outfall Sampling Results Report for June 16, 2025 (Sampling Report) was prepared by TRC Environmental Corporation, Inc., (TRC) on behalf of SPS Technologies Abington PA (SPS). The SPS facility is located at 301 Highland Avenue, Jenkintown, PA 19046 (Site). This Sampling Report was prepared to provide the outfall sampling results from June 16, 2025, which were collected in general accordance with the TRC Surface Water and Outfall Sampling Plan revised on March 25, 2025 and approved by the PADEP on April 2, 2025. There was a deviation from the Sampling Plan associated with the sampling time due to a non-forecasted qualifying rainfall event occurring the morning of June 15, 2025. Due to the unexpected precipitation the stormwater samples were not collected until the morning of June 16, 2025.

2.1 Background

The Site is currently owned by SPS Technologies. On February 17, 2025, a fire broke out at the facility causing major damage and a cessation of operation. Prior to the fire, facility operations consisted of manufacturing of bolts, nuts, screws, rivets, washers, furniture, and fixtures.

3.0 STORMWATER INVESTIGATION

TRC collected one stormwater sample from one permitted outfall as a result of the qualifying precipitation event on June 15, 2025.

3.1 Outfall Sampling Methodology

TRC collected the outfall sample in general accordance with the Sampling Plan as noted above. Field data collected from the location during the sampling include:

- Water depth
- Weather conditions
- Physical characteristics (clarity, appearance, odor)
- Water Quality (DO, pH, OPR, turbidity, conductivity, and temperature)
- Water velocity (visibly moving)

The field data is documented in the field sampling form included as **Appendix A**, except for the in-field pH measurement, which is summarized in **Table 1**.

3.2 Outfall Sampling

All samples were submitted to Pace Analytical in Westborough, Massachusetts (Certification No. 68-03671) and Pace Analytical in Mansfield, Massachusetts (Certification No. 68-02089), following chain-of-custody protocols.

3.3 Outfall Sampling Results

The stormwater sample was collected from one permitted outfall location in accordance with Sampling Plan for the following parameters:

- Chemical Oxygen Demand
- Total Suspended Solids
- Nitrate-Nitrite as N
- Hexavalent Chromium (calculated for Trivalent Chromium)
- Total Aluminum
- Total Copper
- Total Iron
- Total Lead
- Total Zinc
- Oil & Grease
- Free Cyanide
- Total Cyanide
- Total Nickel
- Dissolved Nickel
- Total Chromium
- Dissolved Chromium

- Methyl ethyl ketone (2-Butanone)
- Toluene
- Hardness

The validated analytical results are summarized in **Table 1**. The sampling location is shown on **Figure 1**.

4.0 DATA QUALITY ASSURANCE/QUALITY CONTROL MANAGEMENT

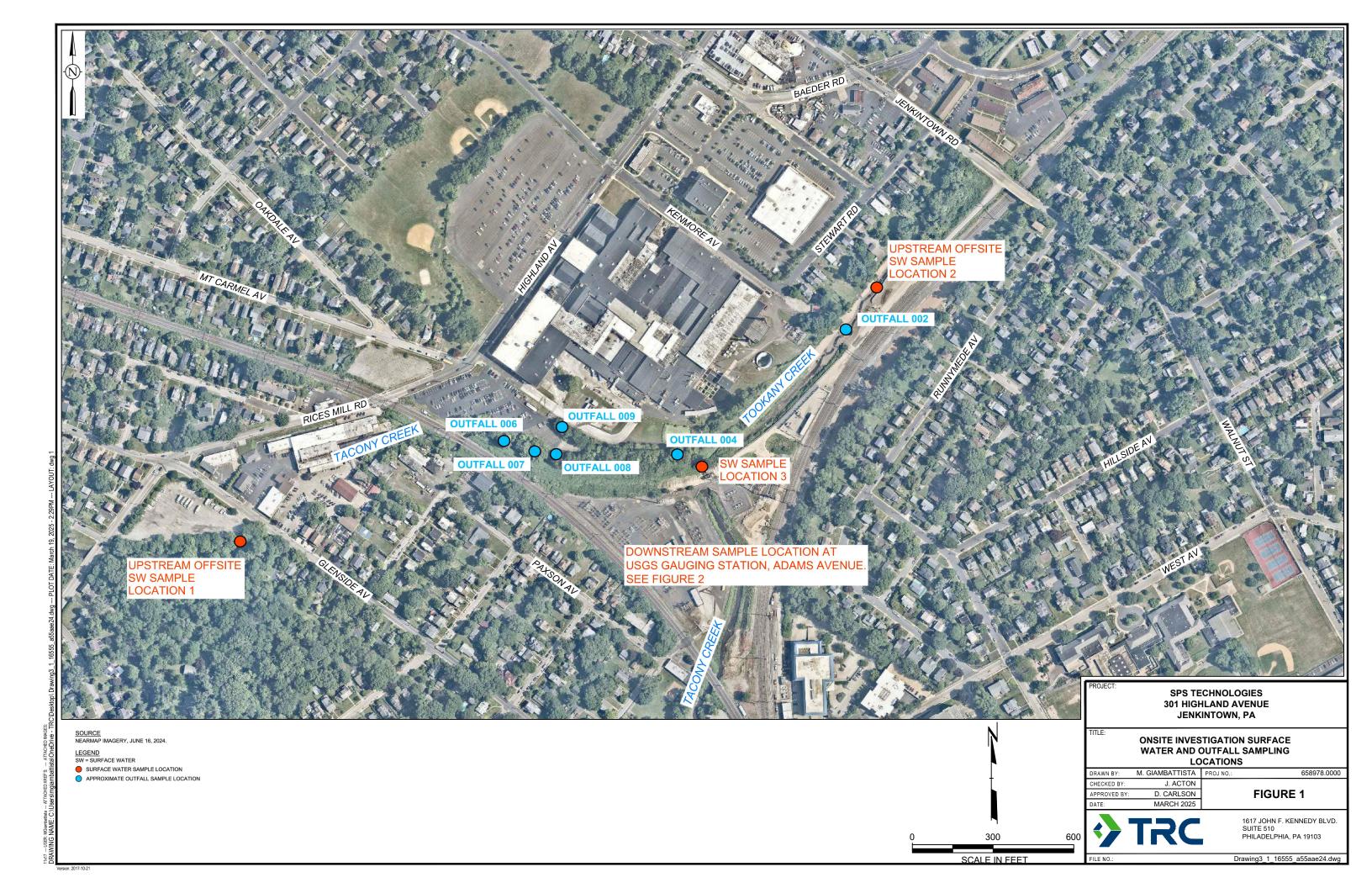
4.1 Field Quality Assurance/Quality Control Requirements.

Field personnel performed data quality control (QC) verification of field measurements. This process includes equipment calibration, reviewing calibration records, and duplicate readings to ensure data accuracy. Field measurements were documented in the field information form included as **Appendix A** and pH readings are summarized in **Table 1**.

All hand equipment used during the sampling event was cleaned with Alconox and distilled water. Disposable equipment was used for sample collection and processing as appropriate. Field personnel wore disposable nitrile sampling gloves during sampling activities. Sampling gloves were discarded following collection at each sample location and replaced before handling decontaminated equipment or work surfaces.

4.2 Analytical QA/QC Samples

All quality assurance and quality control (QA/QC), field duplicates and matrix spikes/matrix spike duplicates (MS/MSD) were collected in accordance with the Sampling Plan at a rate of 1 per 20 samples per day. A trip blank was included daily for volatile organic compounds (VOCs). A field blank was not collected because single-use disposable ladles were used to collect samples.


4.3 Data Evaluation

The reliability of the analytical data was evaluated to assess its suitability for use in off-Site surface water monitoring. In particular, the data's precision, accuracy, and sensitivity were evaluated based on field sampling documentation, adherence to sample holding times, and analysis of the QC samples (duplicates, spikes, and blanks). Data validation was performed in accordance with the Sampling Plan. The data validation report is included as **Appendix B**. The laboratory analytical report is included as **Appendix C**.

4.4 References

• SPS Technologies Surface Water and Outfall Sampling Plan, revised on March 25, 2025

Project Number: 658978

Surface Water Analytical Results Outfall Sampling Results Report SPS Technologies Jenkintown, Pennsylvania

Sample Loc	Outfall 006				Outfall 006 (Duplicate)				
Fie	eld Sample ID	OF006-061625				DUP-061625			
L	Lab Sample ID			L2537602-01				602-02	
S	ampling Date		6/16/2	2025			6/16/	/2025	
	Matrix		Water				Wa	ater	
Parameter	Units	Result	Q	RL	MDL	Result	Q	RL	MDL
Volatile Organic Compounds									
Toluene	mg/L	ND		0.0010	0.00031	ND		0.0010	0.00031
2-Butanone (MEK)	mg/L	ND		0.010	0.0010	ND		0.010	0.0010
General Chemistry									
Chromium, Trivalent	mg/L	ND		0.0010	0.003	ND		0.0010	0.003
Chromium, Hexavalent	mg/L	ND		0.010	0.003	ND		0.010	0.003
Total Cyanide	mg/L	ND		0.005	0.001	ND		0.005	0.001
Free Cyanide	mg/L	ND		0.010	0.003	ND		0.010	0.003
Oil & Grease	mg/L	ND		4.0	4.0	ND		4.0	4.0
Total Suspended Solids	mg/L	ND		5.0	NA	ND		5.0	NA
Nitrate/Nitrite as Nitrogen	mg/L	4.0		0.10	0.046	4.0		0.10	0.046
Chemical Oxygen Demand	mg/L	ND		20	6.0	ND		20	6.0
Total Metals									
Total Aluminum	mg/L	0.00952	J	0.01000	0.00327	0.00917	J	0.00100	0.00327
Total Chromium	mg/L	0.00133		0.00100	0.00017	ND		0.00100	0.00017
Total Copper	mg/L	0.00094	J	0.00100	0.00038	0.00118		0.00100	0.00038
Total Iron	mg/L	0.09159		0.05000	0.01910	0.07860		0.05000	0.01910
Total Lead	mg/L	ND			0.00034	ND		0.00100	0.00034
Total Nickel	mg/L	0.00125	J	0.00200	0.00055	0.00124	J	0.00200	0.00055
Total Zinc	mg/L	0.00795		0.00500	0.00341	0.00795		0.00500	0.00341
Dissolved Metals									
Dissolved Chromium	mg/L	ND		0.0010	0.0002	0.0002	J	0.0010	0.0002
Dissolved Nickel	mg/L	0.0011	J	0.0020	0.0006	0.0011	J	0.0020	0.0006
Total Hardness									
Hardness	mg/L	192.6		0.5400		190.8		0.5400	
Field Parameters									
pH ¹	SU	7.95				7.95			

Notes:

1.) Field measurements for pH were performed by TRC field personnel prior to sample collection using a Horiba U-52. Field measurements were not validated.

Abbreviations:

MDL: Method Detection Limit

mg/L: milligrams per liter

ND: Non-Detect

NA: Not Applicable

Q: Qualifier

RL: Reporting Limit

SU: Standard Units

Qualifiers:

Qualifiers:

J: Estimated Result

Surface Water/Outfall Sample Field Information Form

Spe

Location:

Abiling ton PA

Project Number:

Water Quality Meter:

Ampling Date/Time:

Sampling Date/Time:

Sample Characteristics:

Analytical Parameters:

Weather Conditions:

61° Cloudy No Wind No Pain

Weather Conditions:

Meter Conditions:

Meter Conditions:

Meter Conditions:

Sample Characteristics:

Analytical Parameters:

Weather Conditions:

Meter Conditions:

M

SAMPLE/STATION	STATION DESCRIPTION (stream, lake river)	DATE MM/DD/YY	TIME homin	TOTAL DEPTH inches	SAMPLE DEPTH	WATER TEMP Celsius	SALINITY ppt	pH SU	COND mS/cm	ORP mV	TURBIDITY NTU	DO mg/L	VELOCITY ft/sec
OF006-061625	outfall	6/16/25	900	nm	-	16.46	035	7.95	0.716	160	0,0	12,54	MM
	Sample Characteristics :				7								
	Sample Characteristics :												
	Sample Characteristics :									E STATE OF THE STA			
	Sample Characteristics.							100000	RESIDENCE.	Series St.			
	Sample Characteristics :												9
								1000					
						7							
	Sample Characteristics:												
			1000				1000						
													Name of Street
	Sample Characteristics :								20000000	10000000			
								2000					
							2000						
					San Barre	NAME OF THE PERSON OF THE PERS		14633-30					
							10000						

Data Validation Report

Site: SPS Technologies, Outfall Sampling

Laboratory: Pace Analytical, Westborough and Mansfield, MA

SDG No.: L2537602

Parameters: Select Volatile Organic Compounds (VOCs), Select Metals, Hardness, Total

Suspended Solids (TSS), Total Cyanide, Free Cyanide, Nitrate/Nitrite, Chemical Oxygen Demand (COD), Oil & Grease, Hexavalent Chromium,

Trivalent Chromium

Data Reviewer: Nancy Bergstrom/TRC
Peer Reviewer: Kristen Morin/TRC
Date: June 17. 2025

Samples Reviewed and Evaluation Summary

2 Outfall Samples: OF006-061625, DUP-061625¹

1 Trip Blank: TRIP BLANK-061625

The above-listed samples were collected on June 16, 2025 and were analyzed for one or more of the following parameters.

- Select VOCs (toluene, 2-butanone) using EPA Method 624.1
- Select total metals (aluminum, chromium, copper, iron, lead, nickel, zinc) using EPA Method 200.8
- Select dissolved metals (chromium, nickel) using EPA Method 200.8
- Total hardness (by calculation) using EPA Method 200.8
- TSS using Standard Methods (SM) 2540D
- Total cyanide using SM 4500 CN-CE
- Free cyanide using SM 4500 CN-E (M)
- Nitrate/nitrite using EPA Method 353.2
- COD using EPA Method 410.4
- Oil and grease using EPA Method 1664B
- Hexavalent chromium using SM 3500 CR-B
- Trivalent chromium by calculation

Limited data validation was performed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-20-005), November 2020 and USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA-542-R-20-006), November 2020, modified for the methodologies utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
- * Blanks
- Surrogate Recoveries (VOCs only)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results

¹Field duplicate of OF006-061625

- Laboratory Duplicate Results
- Laboratory Control Sample (LCS) Results
- Field Duplicate Results
 - Sample Results and Reported Quantitation Limits (QLs)
- * All criteria were met.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. Qualifications applied to the data as a result of sampling error was not required. Qualifications applied to the data as a result of analytical error are discussed below.

 Potential uncertainty exists for select metals that were below the lowest calibration standard and QL. These results were qualified as estimated (J) by the laboratory in the associated samples. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level 2 data package with the following exceptions/notes.

- The laboratory performed MS/laboratory duplicate analyses on sample OF006-061625 for nitrate/nitrite and COD rather than MS/MSD analyses as requested on the COC.
- MS/MSD analyses were not performed on sample OF006-061625 for TSS as requested on the COC; a laboratory duplicate analysis was performed instead due to the nature of the analysis.
- The laboratory Sample Receipt and Container Information Report noted a container for the oil & grease analysis of sample OF006-061625 was received with a cracked cap, but the sample was intact.

There is no impact on the data usability due to these issues and no validation actions were taken on this basis.

Holding Times and Sample Preservation

All holding time and preservation criteria were met for all parameters.

Blanks

Target analytes were not detected in the associated laboratory method blanks. Target VOCs were not detected in the trip blank. A field blank was not submitted with the data set.

Surrogate Recoveries (VOCs only)

All criteria were met.

MS/MSD Results

MS/MSD analyses were performed on sample OF006-061625 for VOCs, total and dissolved metals, hardness, total cyanide, free cyanide, oil and grease, and hexavalent chromium. MS analyses were

performed on sample OF006-061625 for nitrate/nitrite and COD. All criteria were met.

Laboratory Duplicate Results

Laboratory duplicate analyses were performed on sample OF006-061625 for TSS, total cyanide, free cyanide, nitrate/nitrite, COD, oil and grease, and hexavalent chromium. All criteria were met.

LCS Results

All criteria were met for all parameters.

Field Duplicate Results

Samples OF006-061625 and DUP-061625 were submitted as the field duplicate pair with this sample set. The following table summarizes the relative percent differences (RPDs) and/or absolute differences (AbsDs), where applicable, of the detected analytes. The QL was used in the calculation of the AbsD for ND results. All criteria were met.

Analyte	QLs (mg/L)	OF006- 061625 (mg/L)	DUP- 061625 (mg/L)	RPD (%) or AbsD (mg/L)	Validation Action	
Total Aluminum	0.010	0.00952 J	0.00917 J	AbsD = 0.00035		
Total Chromium	0.001	0.00133	ND	AbsD = 0.00033		
Total Copper	0.001	0.00094 J	0.00118	AbsD = 0.00024		
Total Iron	0.050 0.09159	0.07860	AbsD = 0.01299			
Total Nickel	0.002 0.00125		0.00124 J	AbsD = 0.00001	Name all anitania vyana maat	
Total Zinc	0.005	0.00795	0.00795	AbsD = 0	None; all criteria were met.	
Hardness	0.54	192.6	190.8	RPD = 0.9		
Dissolved Chromium	0.001	ND	0.0002 J	AbsD = 0.0008		
Dissolved Nickel	0.002	0.0011 J	0.0011 J	AbsD = 0		
Nitrate/Nitrite	0.10	4.0	4.0	RPD = 0		

Field duplicate criteria are as follows:

- RPD ≤ 30 when positive results for both samples are ≥ 5x QL
- AbsD ≤ QL when one or both results are < 5x QL

Sample Results and Reported Quantitation Limits

Select metals results were reported that were below the lowest calibration standard level and QL. These results were qualified as estimated (J) in the associated samples by the laboratory.

There were no dilutions performed on the samples in this data set.

The total and dissolved metal results were evaluated during data validation to identify any dissolved concentrations that were significantly higher than the associated total concentration. The evaluation was based on the following criteria to determine significance: percent difference (%D) should be \leq 20% when dissolved results are greater than total results and both results are \geq 5x the QL. If the dissolved result was > the total and one or both results were \leq 5x the QL, then the AbsD should be \leq 2x the QL. These criteria were met for all samples.

QUALIFIED FORM 1s

VOLATILES

Project Name: SPS TECHNOLOGIES Lab Number: L2537602

Project Number: 658978 Report Date: 06/17/25

SAMPLE RESULTS

Lab ID: L2537602-01 Date Collected: 06/16/25 09:00

Client ID: OF006-061625 Date Received: 06/16/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 06/17/25 10:23

Analyst: JKH

Parameter	Result	Result Qualifier		RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Pentafluorobenzene	100	60-140	
Fluorobenzene	84	60-140	
4-Bromofluorobenzene	97	60-140	

Project Name: SPS TECHNOLOGIES Lab Number: L2537602

Project Number: 658978 Report Date: 06/17/25

SAMPLE RESULTS

Lab ID: L2537602-02 Date Collected: 06/16/25 00:00

Client ID: DUP-061625 Date Received: 06/16/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 06/17/25 09:49

Analyst: JKH

Parameter	Result	Result Qualifier		RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	98		60-140	
Fluorobenzene	86		60-140	
4-Bromofluorobenzene	97		60-140	

06/16/25 00:00

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab Number: L2537602

Report Date: 06/17/25

Lab ID: L2537602-03

Client ID: TRIP BLANK-061625 Sample Location: JENKINTOWN, PA

Date Received: 06/16/25 Field Prep: None

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 06/17/25 09:15

Analyst: JKH

Parameter	Result	Result Qualifier		RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	101		60-140
Fluorobenzene	87		60-140
4-Bromofluorobenzene	102		60-140

METALS

Project Name: SPS TECHNOLOGIES Lab Number: L2537602

Project Number: 658978 Report Date: 06/17/25

SAMPLE RESULTS

 Lab ID:
 L2537602-01
 Date Collected:
 06/16/25 09:00

 Client ID:
 OF006-061625
 Date Received:
 06/16/25

 Sample Location:
 JENKINTOWN, PA
 Field Prep:
 Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
Total Metals - Mans	Total Metals - Mansfield Lab											
Aluminum, Total	0.00952	J	mg/l	0.01000	0.00327	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR	
Chromium, Total	0.00133		mg/l	0.00100	0.00017	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR	
Copper, Total	0.00094	J	mg/l	0.00100	0.00038	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR	
Iron, Total	0.09159		mg/l	0.05000	0.01910	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR	
Lead, Total	ND		mg/l	0.00100	0.00034	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR	
Nickel, Total	0.00125	J	mg/l	0.00200	0.00055	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR	
Zinc, Total	0.00795		mg/l	0.00500	0.00341	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR	
Total Hardness (by	calculation	n) - Mansfi	eld Lab									
Hardness	192.6		mg/l	0.5400	NA	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR	
General Chemistry	- Mansfiel	d Lab										
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		06/17/25 12:11	NA	107,-		
Dissolved Metals - I	Mansfield	Lab										
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	06/17/25 08:00	06/17/25 11:55	EPA 3005A	3,200.8	BLR	
Nickel, Dissolved	0.0011	J	mg/l	0.0020	0.0006	1	06/17/25 08:00	06/17/25 11:55	EPA 3005A	3,200.8	BLR	

Project Name: SPS TECHNOLOGIES Lab Number: L2537602

Project Number: 658978 Report Date: 06/17/25

SAMPLE RESULTS

Lab ID:L2537602-02Date Collected:06/16/25 00:00Client ID:DUP-061625Date Received:06/16/25Sample Location:JENKINTOWN, PAField Prep:Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Aluminum, Total	0.00917	J	mg/l	0.01000	0.00327	1	06/17/25 08:00	06/17/25 12:25	EPA 3005A	3,200.8	BLR
Chromium, Total	ND		mg/l	0.00100	0.00017	1	06/17/25 08:00	06/17/25 12:25	EPA 3005A	3,200.8	BLR
Copper, Total	0.00118		mg/l	0.00100	0.00038	1	06/17/25 08:00	06/17/25 12:25	EPA 3005A	3,200.8	BLR
Iron, Total	0.07860		mg/l	0.05000	0.01910	1	06/17/25 08:00	06/17/25 12:25	EPA 3005A	3,200.8	BLR
Lead, Total	ND		mg/l	0.00100	0.00034	1	06/17/25 08:00	06/17/25 12:25	EPA 3005A	3,200.8	BLR
Nickel, Total	0.00124	J	mg/l	0.00200	0.00055	1	06/17/25 08:00	06/17/25 12:25	EPA 3005A	3,200.8	BLR
Zinc, Total	0.00795		mg/l	0.00500	0.00341	1	06/17/25 08:00) 06/17/25 12:25	EPA 3005A	3,200.8	BLR
Total Hardness (by	calculation	n) - Mansfi	eld Lab								
Hardness	190.8		mg/l	0.5400	NA	1	06/17/25 08:00	06/17/25 12:25	EPA 3005A	3,200.8	BLR
General Chemistry - Mansfield Lab											
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		06/17/25 12:25	NA	107,-	
Dissolved Metals - Mansfield Lab											
Chromium, Dissolved	0.0002	J	mg/l	0.0010	0.0002	1	06/17/25 08:00	06/17/25 12:42	EPA 3005A	3,200.8	BLR
Nickel, Dissolved	0.0011	J	mg/l	0.0020	0.0006	1	06/17/25 08:00	06/17/25 12:42	EPA 3005A	3,200.8	BLR

INORGANICS & MISCELLANEOUS

Project Name: SPS TECHNOLOGIES

Lab Number:

L2537602

Project Number: 658978

Report Date:

06/17/25

SAMPLE RESULTS

Lab ID: L2537602-01

Date Collected:

06/16/25 09:00

Client ID:

OF006-061625

Date Received:

06/16/25

Sample Location: JENKINTOWN, PA

Field Prep: Refer to COC

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	oorough Lat)								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	06/17/25 07:57	121,2540D	BAY
Cyanide, Total	ND		mg/l	0.005	0.001	1	06/17/25 10:55	06/17/25 15:09	121,4500CN-CE	JER
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	06/17/25 07:36	121,4500CN-	KAF
Nitrogen, Nitrate/Nitrite	4.0		mg/l	0.10	0.046	1	-	06/17/25 06:22	E(M) 44,353.2	KAF
Chemical Oxygen Demand	ND		mg/l	20	6.0	1	06/17/25 11:30	06/17/25 15:46	44,410.4	CVN
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	06/17/25 09:09	06/17/25 11:07	140,1664B	TPR
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	06/17/25 05:00	06/17/25 05:13	121,3500CR-B	DMO

Project Name: SPS TECHNOLOGIES Lab Number: L2537602

Project Number: 658978 Report Date: 06/17/25

SAMPLE RESULTS

Lab ID: L2537602-02 Date Collected: 06/16/25 00:00

Client ID: DUP-061625 Date Received: 06/16/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lat)								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	06/17/25 07:57	121,2540D	BAY
Cyanide, Total	ND		mg/l	0.005	0.001	1	06/17/25 10:55	06/17/25 15:15	121,4500CN-CE	JER
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	06/17/25 07:36	121,4500CN-	KAF
Nitrogen, Nitrate/Nitrite	4.0		mg/l	0.10	0.046	1	-	06/17/25 06:29	E(M) 44,353.2	KAF
Chemical Oxygen Demand	ND		mg/l	20	6.0	1	06/17/25 11:30	06/17/25 15:46	44,410.4	CVN
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	06/17/25 09:09	06/17/25 14:16	140,1664B	TPR
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	06/17/25 05:00	06/17/25 05:15	121,3500CR-B	DMO

ANALYTICAL REPORT

Lab Number: L2537602

Client: TRC Environmental

1617 JFK Blvd.

Suite 510

Philadelphia, PA 19103

ATTN: Julie Acton
Phone: (215) 563-2122

Project Name: SPS TECHNOLOGIES

Project Number: 658978 Report Date: 06/17/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Project Name: SPS TECHNOLOGIES

Project Number: 658978

 Lab Number:
 L2537602

 Report Date:
 06/17/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2537602-01	OF006-061625	WATER	JENKINTOWN, PA	06/16/25 09:00	06/16/25
L2537602-02	DUP-061625	WATER	JENKINTOWN, PA	06/16/25 00:00	06/16/25
L2537602-03	TRIP BLANK-061625	WATER	JENKINTOWN, PA	06/16/25 00:00	06/16/25

L2537602

Lab Number:

Project Name: SPS TECHNOLOGIES

Project Number: 658978 Report Date: 06/17/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:SPS TECHNOLOGIESLab Number:L2537602Project Number:658978Report Date:06/17/25

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Lelly Well Kelly O'Neill

Authorized Signature:

Title: Technical Director/Representative

Date: 06/17/25

Pace

ORGANICS

VOLATILES

Project Name: SPS TECHNOLOGIES Lab Number: L2537602

Project Number: 658978 Report Date: 06/17/25

SAMPLE RESULTS

Lab ID: L2537602-01 Date Collected: 06/16/25 09:00

Client ID: OF006-061625 Date Received: 06/16/25
Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 06/17/25 10:23

Analyst: JKH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Pentafluorobenzene	100	60-140	
Fluorobenzene	84	60-140	
4-Bromofluorobenzene	97	60-140	

Project Name: SPS TECHNOLOGIES Lab Number: L2537602

Project Number: 658978 Report Date: 06/17/25

SAMPLE RESULTS

Lab ID: L2537602-02 Date Collected: 06/16/25 00:00

Client ID: DUP-061625 Date Received: 06/16/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 06/17/25 09:49

Analyst: JKH

Parameter	Result	Result Qualifier		RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Pentafluorobenzene	98	60-140	
Fluorobenzene	86	60-140	
4-Bromofluorobenzene	97	60-140	

06/16/25 00:00

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab Number: L2537602

Report Date: 06/17/25

Lab ID: L2537602-03

Client ID: TRIP BLANK-061625 Sample Location: JENKINTOWN, PA

Date Received: 06/16/25 Field Prep: None

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 06/17/25 09:15

Analyst: JKH

Parameter	Result	Result Qualifier Units		RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	101		60-140	
Fluorobenzene	87		60-140	
4-Bromofluorobenzene	102		60-140	

Project Name: SPS TECHNOLOGIES Lab Number: L2537602

Project Number: 658978 Report Date: 06/17/25

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 06/17/25 08:42

Analyst: JKH

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Westl	oorough Lab	for sample	e(s): 01-03	Batch:	WG2079922-4	
Toluene	ND		mg/l	0.0010	0.00031	
2-Butanone	ND		mg/l	0.010	0.0010	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
		_
Pentafluorobenzene	102	60-140
Fluorobenzene	87	60-140
4-Bromofluorobenzene	94	60-140

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number:

L2537602

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborou	igh Lab Associat	ed sample(s)	: 01-03 Batch	: WG20	79922-3				
Toluene	100		-		70-130	-		41	
2-Butanone	98		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	105		60-140
Fluorobenzene	92		60-140
4-Bromofluorobenzene	94		60-140

Matrix Spike Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number:

L2537602

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recove Qual Limit	- ,	Qual	RPD Limits
Volatile Organics by GC/MS Client ID: OF006-061625	- Westborou	ugh Lab As	sociated sar	mple(s): 01-03	QC Bate	ch ID: WG	32079922-5 V	VG2079922-6	QC Samp	ole: L253	37602-01
Toluene	ND	0.02	0.020	100		0.020	100	47-150	0 0		41
2-Butanone	ND	0.05	0.039	78		0.040	80	60-140	0 3		30

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
4-Bromofluorobenzene	95	98	60-140
Fluorobenzene	86	86	60-140
Pentafluorobenzene	103	103	60-140

METALS

Project Name: SPS TECHNOLOGIES Lab Number: L2537602

Project Number: 658978 Report Date: 06/17/25

SAMPLE RESULTS

 Lab ID:
 L2537602-01
 Date Collected:
 06/16/25 09:00

 Client ID:
 OF006-061625
 Date Received:
 06/16/25

 Sample Location:
 JENKINTOWN, PA
 Field Prep:
 Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.00952	J	mg/l	0.01000	0.00327	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR
Chromium, Total	0.00133		mg/l	0.00100	0.00017	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR
Copper, Total	0.00094	J	mg/l	0.00100	0.00038	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR
Iron, Total	0.09159		mg/l	0.05000	0.01910	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR
Lead, Total	ND		mg/l	0.00100	0.00034	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR
Nickel, Total	0.00125	J	mg/l	0.00200	0.00055	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR
Zinc, Total	0.00795		mg/l	0.00500	0.00341	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR
Total Hardness (by	calculatio	n) - Mansfi	eld Lab								
Hardness	192.6		mg/l	0.5400	NA	1	06/17/25 08:00	06/17/25 12:11	EPA 3005A	3,200.8	BLR
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		06/17/25 12:11	NA	107,-	
Dissolved Metals - N	Mansfield	Lab									
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	06/17/25 08:00	06/17/25 11:55	EPA 3005A	3,200.8	BLR
Nickel, Dissolved	0.0011	J	mg/l	0.0020	0.0006	1	06/17/25 08:00	06/17/25 11:55	EPA 3005A	3,200.8	BLR

Project Name: SPS TECHNOLOGIES Lab Number: L2537602

Project Number: 658978 Report Date: 06/17/25

SAMPLE RESULTS

 Lab ID:
 L2537602-02
 Date Collected:
 06/16/25 00:00

 Client ID:
 DUP-061625
 Date Received:
 06/16/25

Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.00917	J	mg/l	0.01000	0.00327	1	06/17/25 08:00	06/17/25 12:25	EPA 3005A	3,200.8	BLR
Chromium, Total	ND		mg/l	0.00100	0.00017	1	06/17/25 08:00	06/17/25 12:25	EPA 3005A	3,200.8	BLR
Copper, Total	0.00118		mg/l	0.00100	0.00038	1	06/17/25 08:00	06/17/25 12:25	EPA 3005A	3,200.8	BLR
Iron, Total	0.07860		mg/l	0.05000	0.01910	1	06/17/25 08:00	06/17/25 12:25	EPA 3005A	3,200.8	BLR
Lead, Total	ND		mg/l	0.00100	0.00034	1	06/17/25 08:00	06/17/25 12:25	EPA 3005A	3,200.8	BLR
Nickel, Total	0.00124	J	mg/l	0.00200	0.00055	1	06/17/25 08:00	06/17/25 12:25	EPA 3005A	3,200.8	BLR
Zinc, Total	0.00795		mg/l	0.00500	0.00341	1	06/17/25 08:00) 06/17/25 12:25	EPA 3005A	3,200.8	BLR
Total Hardness (by	calculation	n) - Mansfi	eld Lab								
Hardness	190.8		mg/l	0.5400	NA	1	06/17/25 08:00) 06/17/25 12:25	EPA 3005A	3,200.8	BLR
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		06/17/25 12:25	NA	107,-	
Dissolved Metals - N	Mansfield	Lab									
Chromium, Dissolved	0.0002	J	mg/l	0.0010	0.0002	1	06/17/25 08:00) 06/17/25 12:42	EPA 3005A	3,200.8	BLR
Nickel, Dissolved	0.0011	J	mg/l	0.0020	0.0006	1	06/17/25 08:00	06/17/25 12:42	EPA 3005A	3,200.8	BLR

Project Name: SPS TECHNOLOGIES

0101201111020011

Lab Number:

L2537602

Project Number: 658978

Report Date:

06/17/25

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	d Lab for sample(s):	01-02 E	Batch: WO	G20797	01-1				
Aluminum, Total	ND	mg/l	0.01000	0.00327	1	06/17/25 08:00	06/17/25 12:43	3,200.8	BLR
Chromium, Total	ND	mg/l	0.00100	0.00017	1	06/17/25 08:00	06/17/25 12:43	3,200.8	BLR
Copper, Total	ND	mg/l	0.00100	0.00038	1	06/17/25 08:00	06/17/25 12:43	3,200.8	BLR
Iron, Total	ND	mg/l	0.05000	0.01910	1	06/17/25 08:00	06/17/25 12:43	3,200.8	BLR
Lead, Total	ND	mg/l	0.00100	0.00034	. 1	06/17/25 08:00	06/17/25 12:43	3,200.8	BLR
Nickel, Total	ND	mg/l	0.00200	0.00055	1	06/17/25 08:00	06/17/25 12:43	3,200.8	BLR
Zinc, Total	ND	mg/l	0.00500	0.00341	1	06/17/25 08:00	06/17/25 12:43	3,200.8	BLR

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness (by	calculation) - Mansfield L	ab for sa	ample(s):	01-02	Batch: Wo	G2079701-1			
Hardness	ND	mg/l	0.5400	NA	1	06/17/25 08:00	06/17/25 12:43	3,200.8	BLR

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Dissolved Metals - Ma	ansfield Lab	for sample	e(s): 01-02	2 Batch	: WG20	079702-1				
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	06/17/25 08:00	06/17/25 12:21	3,200.8	BLR
Nickel, Dissolved	ND		mg/l	0.0020	0.0006	1	06/17/25 08:00	06/17/25 12:2	3,200.8	BLR

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number:

L2537602

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sam	ole(s): 01-02	Batch: WG2	079701-2					
Aluminum, Total	102		-		85-115	-		
Chromium, Total	95		-		85-115	-		
Copper, Total	97		-		85-115	-		
Iron, Total	103		-		85-115	-		
Lead, Total	96		-		85-115	-		
Nickel, Total	96		-		85-115	-		
Zinc, Total	98		-		85-115	-		
Total Hardness (by calculation) - Mansfield La	b Associated	sample(s): 0	1-02 Batch: \	VG207970 ⁻	1-2			
Hardness	94		-		85-115	-		
Dissolved Metals - Mansfield Lab Associated	sample(s): 01	-02 Batch:	WG2079702-2					
Chromium, Dissolved	95		-		85-115	-		
Nickel, Dissolved	96		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number:

L2537602

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Total Metals - Mansfield Lab 061625	Associated sam	nple(s): 01-02	QC Bato	h ID: WG207	9701-3 WG207970 ⁻	1-4 QC Sam	nple: L2537602-01	Clier	nt ID: OF006-
Aluminum, Total	0.00952J	2	2.101	105	2.060	103	70-130	2	20
Chromium, Total	0.00133	0.2	0.2038	101	0.1993	99	70-130	2	20
Copper, Total	0.00094J	0.25	0.2572	103	0.2536	101	70-130	1	20
Iron, Total	0.09159	1	1.129	104	1.082	99	70-130	4	20
Lead, Total	ND	0.53	0.5482	103	0.5367	101	70-130	2	20
Nickel, Total	0.00125J	0.5	0.5110	102	0.5044	101	70-130	1	20
Zinc, Total	0.00795	0.5	0.5328	105	0.5270	104	70-130	1	20
Total Hardness (by calculati ID: OF006-061625	on) - Mansfield L	ab Associate	d sample(s): 01-02 QC	Batch ID: WG2079	701-3 WG20	079701-4 QC Sam	ple: L2	2537602-01 Cli
Hardness	192.6	66.2	256.9	97	250.4	87	70-130	3	20
Dissolved Metals - Mansfield 061625	d Lab Associated	l sample(s): 0	1-02 QC	Batch ID: WO	G2079702-3 WG207	79702-4 QC	Sample: L2537602	2-01	Client ID: OF006
Chromium, Dissolved	ND	0.2	0.1849	92	0.1800	90	70-130	3	20
Nickel, Dissolved	0.0011J	0.5	0.4552	91	0.4450	89	70-130	2	20

INORGANICS & MISCELLANEOUS

Project Name: SPS TECHNOLOGIES Lab Number:

L2537602

Project Number: 658978 **Report Date:**

06/17/25

SAMPLE RESULTS

Lab ID: L2537602-01

OF006-061625

Date Collected: Date Received: 06/16/25 09:00

Client ID: Sample Location: JENKINTOWN, PA

Field Prep:

06/16/25 Refer to COC

Sample Depth:

Matrix:

Water Dilution Date Date Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lat)								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	06/17/25 07:57	121,2540D	BAY
Cyanide, Total	ND		mg/l	0.005	0.001	1	06/17/25 10:55	06/17/25 15:09	121,4500CN-CE	JER
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	06/17/25 07:36	121,4500CN- E(M)	KAF
Nitrogen, Nitrate/Nitrite	4.0		mg/l	0.10	0.046	1	-	06/17/25 06:22	44,353.2	KAF
Chemical Oxygen Demand	ND		mg/l	20	6.0	1	06/17/25 11:30	06/17/25 15:46	44,410.4	CVN
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	06/17/25 09:09	06/17/25 11:07	140,1664B	TPR
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	06/17/25 05:00	06/17/25 05:13	121,3500CR-B	DMO

Project Name: SPS TECHNOLOGIES Lab Number: L2537602

Project Number: 658978 Report Date: 06/17/25

SAMPLE RESULTS

Lab ID: L2537602-02 Date Collected: 06/16/25 00:00

Client ID: DUP-061625 Date Received: 06/16/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lat)								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	06/17/25 07:57	121,2540D	BAY
Cyanide, Total	ND		mg/l	0.005	0.001	1	06/17/25 10:55	06/17/25 15:15	121,4500CN-CE	JER
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	06/17/25 07:36	121,4500CN-	KAF
Nitrogen, Nitrate/Nitrite	4.0		mg/l	0.10	0.046	1	-	06/17/25 06:29	E(M) 44,353.2	KAF
Chemical Oxygen Demand	ND		mg/l	20	6.0	1	06/17/25 11:30	06/17/25 15:46	44,410.4	CVN
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	06/17/25 09:09	06/17/25 14:16	140,1664B	TPR
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	06/17/25 05:00	06/17/25 05:15	121,3500CR-B	DMO

L2537602

Lab Number:

Project Name: SPS TECHNOLOGIES

Project Number: 658978 Report Date: 06/17/25

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab	for sam	ple(s): 0	1-02 Ba	tch: WG	S2079630-	1			
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10	0.046	1	-	06/17/25 04:09	44,353.2	KAF
General Chemistry - We	estborough Lab	for sam	ple(s): 0	1-02 Ba	tch: WG	S2079672-	1			
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	06/17/25 05:00	06/17/25 05:11	121,3500CR-B	DMO
General Chemistry - We	estborough Lab	for sam	ple(s): 0	1-02 Ba	tch: WG	G2079728-	1			
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	06/17/25 07:57	121,2540D	BAY
General Chemistry - We	estborough Lab	for sam	ple(s): 0	1-02 Ba	tch: WG	G2079743-	1			
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	06/17/25 07:36	121,4500CN-E(N	M) KAF
General Chemistry - We	estborough Lab	for sam	ple(s): 0	1-02 Ba	tch: WG	G2079812-	1			
Cyanide, Total	ND		mg/l	0.005	0.001	1	06/17/25 10:55	06/17/25 14:39	121,4500CN-C	E JER
General Chemistry - We	estborough Lab	for sam	ple(s): 0	1-02 Ba	tch: WG	G2079819-	1			
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	06/17/25 09:09	06/17/25 10:59	140,1664B	TPR
General Chemistry - We	estborough Lab	for sam	ple(s): 0	1-02 Ba	tch: WG	G2079826-	1			
Chemical Oxygen Demand	ND		mg/l	20	6.0	1	06/17/25 11:30	06/17/25 15:46	44,410.4	CVN

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number:

L2537602

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG2079630-2				
Nitrogen, Nitrate/Nitrite	102	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG2079672-2				
Chromium, Hexavalent	102	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG2079728-2				
Solids, Total Suspended	92	-	80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG2079743-2				
Cyanide, Free	97	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG2079812-2				
Cyanide, Total	91	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG2079819-2				
Oil & Grease, Hem-Grav	93	-	78-114	-		18
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG2079826-2				
Chemical Oxygen Demand	97	-	90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number:

L2537602

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD ual Limits
General Chemistry - Westbo	rough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG2079630-4	QC Sample:	L2536722-01 Cli	ent ID: MS	S Sample
Nitrogen, Nitrate/Nitrite	3.3	4	7.2	98	-	-	80-120	-	20
General Chemistry - Westbo	rough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG2079630-6	QC Sample:	L2537602-01 Cli	ent ID: Of	F006-061625
Nitrogen, Nitrate/Nitrite	4.0	4	7.8	95	-	-	80-120	-	20
General Chemistry - Westbo OF006-061625	orough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG2079672-4	WG2079672-5	QC Sample: L25	37602-01	Client ID:
Chromium, Hexavalent	ND	0.1	0.101	101	0.102	102	85-115	1	20
General Chemistry - Westbo OF006-061625	orough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG2079743-4	WG2079743-5	QC Sample: L25	37602-01	Client ID:
Cyanide, Free	ND	0.25	0.221	88	0.234	94	80-120	6	20
General Chemistry - Westbo OF006-061625	orough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG2079812-3	WG2079812-4	QC Sample: L25	37602-01	Client ID:
Cyanide, Total	ND	0.2	0.203	102	0.206	103	90-110	1	30
General Chemistry - Westbo OF006-061625	orough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG2079819-4	WG2079819-5	QC Sample: L25	37602-01	Client ID:
Oil & Grease, Hem-Grav	ND	39.2	39	99	38	98	78-114	3	18
General Chemistry - Westbo	rough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG2079826-3	QC Sample:	L2537602-01 Cli	ent ID: Of	-006-061625
Chemical Oxygen Demand	ND	238	240	102	-	-	90-110	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number:

L2537602

Report Date:

Parameter	Native Sa	ample [Ouplicate Sample	units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-0	2 QC Batch ID:	WG2079630-3	QC Sample:	L2536722-01	Client ID:	DUP Sample
Nitrogen, Nitrate/Nitrite	3.3		3.3	mg/l	0		20
General Chemistry - Westborough Lab	Associated sample(s): 01-0	2 QC Batch ID:	WG2079630-5	QC Sample:	L2537602-01	Client ID:	OF006-061625
Nitrogen, Nitrate/Nitrite	4.0		4.0	mg/l	0		20
General Chemistry - Westborough Lab	Associated sample(s): 01-0	2 QC Batch ID:	WG2079672-3	QC Sample:	L2537602-01	Client ID:	OF006-061625
Chromium, Hexavalent	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01-0	2 QC Batch ID:	WG2079728-3	QC Sample:	L2537602-01	Client ID:	OF006-061625
Solids, Total Suspended	ND		ND	mg/l	NC		32
General Chemistry - Westborough Lab	Associated sample(s): 01-0	2 QC Batch ID:	WG2079743-3	QC Sample:	L2537602-01	Client ID:	OF006-061625
Cyanide, Free	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01-0	2 QC Batch ID:	WG2079812-5	QC Sample:	L2537602-01	Client ID:	OF006-061625
Cyanide, Total	ND		ND	mg/l	NC		30
General Chemistry - Westborough Lab	Associated sample(s): 01-0	2 QC Batch ID:	WG2079819-3	QC Sample:	L2537602-01	Client ID:	OF006-061625
Oil & Grease, Hem-Grav	ND		ND	mg/l	NC		18
General Chemistry - Westborough Lab	Associated sample(s): 01-0	2 QC Batch ID:	WG2079826-4	QC Sample:	L2537602-01	Client ID:	OF006-061625
Chemical Oxygen Demand	ND		8.3J	mg/l	NC		20

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number: L2537602 **Report Date:** 06/17/25

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Information			Initial	Final	Temp			Frozen					
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)				
L2537602-01A	Vial Na2S2O3 preserved	В	NA		3.0	Υ	Absent		624.1-PPM(7)				
L2537602-01A1	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-PPM(7)				
L2537602-01A2	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-PPM(7)				
L2537602-01B	Vial Na2S2O3 preserved	В	NA		3.0	Υ	Absent		624.1-PPM(7)				
L2537602-01B1	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-PPM(7)				
L2537602-01B2	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-PPM(7)				
L2537602-01C	Vial Na2S2O3 preserved	В	NA		3.0	Υ	Absent		624.1-PPM(7)				
L2537602-01C1	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-PPM(7)				
L2537602-01C2	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-PPM(7)				
L2537602-01D	Plastic 250ml HNO3 preserved	В	<2	<2	3.0	Υ	Absent		CR-2008S(180),NI-2008S(180)				
L2537602-01D1	Plastic 250ml HNO3 preserved	Α	<2	<2	3.2	Υ	Absent		CR-2008S(180),NI-2008S(180)				
L2537602-01D2	Plastic 250ml HNO3 preserved	Α	<2	<2	3.2	Υ	Absent		CR-2008S(180),NI-2008S(180)				
L2537602-01E	Plastic 250ml HNO3 preserved	В	<2	<2	3.0	Υ	Absent		AL-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),HARDT- 2008(180),FE-2008T(180),PB- 2008T(180),CR-2008T(180)				
L2537602-01E1	Plastic 250ml HNO3 preserved	А	<2	<2	3.2	Y	Absent		AL-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),HARDT- 2008(180),FE-2008T(180),PB- 2008T(180),CR-2008T(180)				
L2537602-01E2	Plastic 250ml HNO3 preserved	А	<2	<2	3.2	Y	Absent		AL-2008T(180),NI-2008T(180),ZN-2008T(180),CU-2008T(180),HARDT-2008(180),FE-2008T(180),PB-2008T(180),CR-2008T(180)				
L2537602-01F	Plastic 250ml H2SO4 preserved	В	<2	<2	3.0	Υ	Absent		NO3/NO2-353(28),COD-410(28)				
L2537602-01F1	Plastic 250ml H2SO4 preserved	Α	<2	<2	3.2	Υ	Absent		NO3/NO2-353(28),COD-410(28)				

Lab Number: L2537602

Report Date: 06/17/25

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2537602-01F2	Plastic 250ml H2SO4 preserved	Α	<2	<2	3.2	Υ	Absent		NO3/NO2-353(28),COD-410(28)
L2537602-01G	Plastic 250ml NaOH preserved	В	>12	>12	3.0	Υ	Absent		TCN-4500(14)
L2537602-01G1	Plastic 250ml NaOH preserved	Α	>12	>12	3.2	Υ	Absent		TCN-4500(14)
L2537602-01G2	Plastic 250ml NaOH preserved	Α	>12	>12	3.2	Υ	Absent		TCN-4500(14)
L2537602-01H	Plastic 950ml unpreserved	В	7	7	3.0	Υ	Absent		HEXCR-3500(1),FCN(1)
L2537602-01H1	Plastic 950ml unpreserved	Α	7	7	3.2	Υ	Absent		HEXCR-3500(1),FCN(1)
L2537602-01H2	Plastic 950ml unpreserved	Α	7	7	3.2	Υ	Absent		HEXCR-3500(1),FCN(1)
L2537602-01J	Plastic 950ml unpreserved	В	7	7	3.0	Υ	Absent		TSS-2540(7)
L2537602-01J1	Plastic 950ml unpreserved	Α	7	7	3.2	Υ	Absent		TSS-2540(7)
L2537602-01J2	Plastic 950ml unpreserved	Α	7	7	3.2	Υ	Absent		TSS-2540(7)
L2537602-01K	Amber 1L HCl preserved	В	NA		3.0	Υ	Absent		OG-1664(28)
L2537602-01K1	Amber 1L HCl preserved	Α	NA		3.2	Υ	Absent		OG-1664(28)
L2537602-01K2	Amber 1L HCl preserved	Α	NA		3.2	Υ	Absent		OG-1664(28)
L2537602-01L	Amber 1L HCl preserved	В	NA		3.0	Υ	Absent		OG-1664(28)
L2537602-01L1	Amber 1L HCl preserved	Α	NA		3.2	Υ	Absent		OG-1664(28)
L2537602-01L2	Amber 1L HCl preserved	Α	NA		3.2	Υ	Absent		OG-1664(28)
L2537602-02A	Vial Na2S2O3 preserved	В	NA		3.0	Υ	Absent		624.1-PPM(7)
L2537602-02B	Vial Na2S2O3 preserved	В	NA		3.0	Υ	Absent		624.1-PPM(7)
L2537602-02C	Vial Na2S2O3 preserved	В	NA		3.0	Υ	Absent		624.1-PPM(7)
L2537602-02D	Plastic 250ml HNO3 preserved	В	<2	<2	3.0	Υ	Absent		CR-2008S(180),NI-2008S(180)
L2537602-02E	Plastic 250ml HNO3 preserved	В	<2	<2	3.0	Y	Absent		AL-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDT-2008(180),CU- 2008T(180),FE-2008T(180),CR- 2008T(180),PB-2008T(180)
L2537602-02F	Plastic 250ml H2SO4 preserved	В	<2	<2	3.0	Υ	Absent		NO3/NO2-353(28),COD-410(28)
L2537602-02G	Plastic 250ml NaOH preserved	В	>12	>12	3.0	Υ	Absent		TCN-4500(14)
L2537602-02H	Plastic 950ml unpreserved	В	7	7	3.0	Υ	Absent		HEXCR-3500(1),FCN(1)
L2537602-02J	Plastic 950ml unpreserved	В	7	7	3.0	Υ	Absent		TSS-2540(7)
L2537602-02K	Amber 1L HCl preserved	В	NA		3.0	Υ	Absent		OG-1664(28)
L2537602-02L	Amber 1L HCl preserved	В	NA		3.0	Υ	Absent		OG-1664(28)

Lab Number: L2537602

Project Number: 658978

SPS TECHNOLOGIES

Project Name:

Report Date: 06/17/25

Container Information			Initial F	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2537602-03A	Vial Na2S2O3 preserved	В	NA		3.0	Υ	Absent		624.1-PPM(7)
L2537602-03B	Vial Na2S2O3 preserved	В	NA		3.0	Υ	Absent		624.1-PPM(7)

Container Comments

L2537602-01L2 cap cracked, sample intact

Project Name:SPS TECHNOLOGIESLab Number:L2537602Project Number:658978Report Date:06/17/25

GLOSSARY

Acronyms

EDL

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:SPS TECHNOLOGIESLab Number:L2537602Project Number:658978Report Date:06/17/25

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyle ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:SPS TECHNOLOGIESLab Number:L2537602Project Number:658978Report Date:06/17/25

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: SPS TECHNOLOGIES Lab Number: L2537602
Project Number: 658978 Report Date: 06/17/25

REFERENCES

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 1664,Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 27

Published Date: 01/24/2025

Page 1 of 2

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

MADEP-APH.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

Document Type: Form Pre-Qualtrax Document ID: 08-113

Pace Analytical Services LLC

Facility: Northeast Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 27

Published Date: 01/24/2025

Page 2 of 2

Certification IDs:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANAB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ΔLPHA	CHAIN OF	CUSTO Project Inform	100	PAGE 1 O	F 1	-	e Rec'd	-	OP		ZE a Del		oles	3300344	SENO/SO/D/	Job #:	T	2537602 RC		
Anymous and a second	N.					☐ FAX ⊠ EMAIL								100000	See Section 1	s Clien	1000	PO #: 228588		
	Mansfield, MA	Project Name: S	SPS Technol	ogies			ADEx				Add'l D	eliverat								
	TEL: 508-822-9300 FAX: 508-822-3288			-5.00			gulato			emen	ts/Re	port l	Limits			-				
Client Information	on	Project Location	: Jenkintowr	ı, PA		Stat PA	le/Fed F	rogran	1				_	Criteria						
Client: TRC Environ	nmental Corporation	Project #: 65897	78															-		
Address: 1617 John	n F. Kennedy Blvd.	Project Manage	r. Julie Actor	1														THE RESERVE OF THE PARTY OF		
Suite 510, Philadel	ohia, PA 19103	ALPHA Quote #	ţ.																	
Phone: 267-679-6728 Turn-Around Time					_AN	ALYS	IS	_		-	_	_	_		_			T		
Fax: 215-563-2339		Standard	⊠ Rus	sh (ONLY IF P	RE-APPROVED)	7			99		60						٥	SAMPLE HANDLING Filtration	Ā	
Email: JActon@trccompanies.com							8	-	9	00	E200.8	00	4.0				2540	☑ Done ☐ Not Needed	#	
The state of the s	been Previously analyzed by Alpha	Due Date:	Time:	1-Day			9	2	M35	E200.8	Nickel	200	27		0.1		SM	☐ Lab to do	В	
Other Project Spe *Attorney-Client Pri All VOAs in 1 Coole Dissolved Metals -	Detection Limits:			Oil and Grease E1664B	Free Cyanide SM4500CN-E(M)	Total Cyanide SM4500CN-CE	Speciated Hex Crhome SM3500-CrB	Total Chromium, Nickel E	Dissolved Chromium, Nic	Total Al, Fe, Pb, Zn, Cu E200.8	Chemical Oxygn Demand E410.	Toluene E624.1	Nitrate-Nitrite as N E353.2	Total Hardness E200.8	Suspendned Solids	Preservation Lab to do (Please specify below)	O T T L E S			
ALPHA Lab ID Sample ID		Collection Sample Sampler's			l g	Cyan	Cyar	ated	Chro	ved		A, F	일			F.	•			
(Lab Use Only)		Date	Time	Sample Matrix	Sampler's Initials	Oil an	Free	Total	Speci	Total	Disso	Total.	Chem	MEK	Nitrate	Total	Total	Sample Specific Comments		
	OF002 (Not collected			SW					\boxtimes											
27107 0	OF004 Potcollected	Chelon	de a	SW							\boxtimes		\boxtimes							
37602.01	OF006-061625 OF000 (00) Not collected	6/16/25	900	SW	Mo	M									\boxtimes			Perform ws/mg	33	
02	DUP- 061625	6/14/28	00!00	SW																
03		6/16/25		SW	Mo														N	
	SF (ND) Not collected	71.70		SW				N						\boxtimes					2	
	sp not not collected			SW		×		×		Ø	×	×	X	×	X				\vdash	
																			\vdash	
				Co	ontainer Type	. A	Р	P	Þ	Р	р	р	Р	٧	Р	р	Р			
				Preservative	В	A	E	Α	C	Α	c	+	Н	*		4	Please print clearly, legib and completely. Sample			
FORM NO. 21 DUINUI (W. 3-JAN-U)		Mocky	Machen O'Donne II			Date/Time Received By 16 16 25 17:00 37:00						2	Date/Time 1				not be logged in and furnieround time clock will start until any ambiguities resolved. All samples submitted are subject to Alphii a Payment Terms.			
Page 35 of 35		3	1	1	61	176		TI	1	ez			6/	16		200				