

SPS TECHNOLOGIES - ABINGTON PA DAILY SURFACE WATER AND OUTFALL SAMPLING RESULTS REPORT FOR MARCH 20, 2025

PREPARED FOR: SPS TECHNOLOGIES

PREPARED BY: TRC Environmental Corporation, Inc 1617 JFK Boulevard, Suite 510 Philadelphia, PA 19103

MARCH 24, 2025

TABLE OF CONTENTS

	Page	No.
1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	3
2.1	BACKGROUND	3
3.0	OFF-SITE SURFACE WATER INVESTIGATION	4
3.1 3.2 3.3	Surface Water, Outfall and Sheet Flow Sampling Methodology Surface Water, Outfall and Sheet Flow Sampling Surface Water Sampling Results	4
4.0	DATA QUALITY ASSURANCE/QUALITY CONTROL MANAGEMENT	6
4.1 4.2 4.3 4.4	Field Quality Assurance/Quality Control Requirements Analytical QA/QC Samples Data Evaluation References	6

Figures

- Figure 1: On-Site Investigation Surface Water, Outfall, and Sheet Flow Sampling Locations
- Figure 2: Off-Site Investigation Surface Water Locations

Table

- Table 1:
 Surface Water Analytical Results
- Table 2:Outfall and Sheet Flow Analytical Results

Appendices

- Appendix A: Surface Water and Outfall/Sheet Flow Field Information Forms
- Appendix B: Data Validation Reports
- Appendix C: Laboratory Analytical Reports

i

1.0 EXECUTIVE SUMMARY

TRC Environmental Corporation, on behalf of SPS Technologies Abington PA (SPS), collected five surface water samples, two outfall samples and one sheet flow surface water sample in accordance with WSP USA Inc. Surface Water and Outfall Sampling Plan revised on March 5, 2025 (Sampling Plan). The samples were collected on March 20, 2025 and submitted to a Pennsylvania-certified analytical laboratory for analysis. The sample locations are shown in the attached **Figures 1** and **2** and the results of the analysis are shown below.

Surface Wat	er	Upstream Offsite SW Sample Location 1	Upstream Offsite SW Sample Location 2	SW Sample Location 3	SW Sample Location 3 (Duplicate)	High School Road Sample Location 4	Downstream SW Sample Location 5
Parameter	Units	Result	Result	Result	Result	Result	Result
Volatile Organic C	ompound	ls					
Toluene	mg/L	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	mg/L	ND	ND	ND	ND	ND	ND
General Chemistry							
Chromium, Trivalent	mg/L	ND	ND	ND	ND	ND	ND
Chromium, Hexavalent	mg/L	ND	ND	ND	ND	ND	ND
Total Cyanide	mg/L	ND UJ	ND UJ	ND UJ	ND UJ	ND UJ	ND UJ
Free Cyanide	mg/L	ND	ND	ND	ND	ND	ND
Oil & Grease	mg/L	ND	ND	ND	ND	ND	ND
Total Metals							
Total Chromium	mg/L	ND	ND	ND	0.00150 J+	ND	ND
Total Nickel	mg/L	0.00154 J	0.00091 J	0.00100 J	0.00145 J	0.00180 J	0.00116 J
Dissolved Metals							
Dissolved Chromium	mg/L	0.0003 J	0.0003 J	0.0002 J	0.0002 J	ND	0.0006 J
Dissolved Nickel	mg/L	0.0016 J	0.0007 J	0.0010 J	0.0009 J	0.0016 J	0.0013 J
Total Hardness							
Hardness	mg/L	254.8	208.2	241.6	238.6	227.3	184.0
Field Parameters							
pН	SU	7.97	8.05	8.00	8.00	6.82	6.40

Outfall and Sheet Flo	w	Outfall 002	Outfall 002 (Duplicate)	Outfall 006	Outfall 009	Sheet Flow
Parameter	Units	Result	Result	Result	Result	Result
Volatile Organic Compounds						
Toluene	mg/L	ND	ND	ND	ND	ND
2-Butanone (MEK)	mg/L	0.0012 J	0.0011 J	ND	ND	ND
General Chemistry						
Chromium, Trivalent	mg/L	ND	ND	ND	0.014	ND
Chromium, Hexavalent	mg/L	ND	ND	ND	ND	ND
Total Cyanide	mg/L	0.002 J	ND	0.002 J	0.003 J	0.003 J
Free Cyanide	mg/L	ND	0.004 J	ND	ND	ND
Oil & Grease	mg/L	ND	ND	ND	ND	ND
Total Suspended Solids	mg/L	18 J	10 J	23 J	32 J	17 J
Nitrate/Nitrite as Nitrogen	mg/L	0.37 J	0.23 J	0.35 J	0.20 J	0.42 J
Chemical Oxygen Demand	mg/L	45	29	34	52	36
Total Metals						
Total Aluminum	mg/L	0.4982	0.4096	0.4509	1.014	0.1802
Total Chromium	mg/L	0.00104	0.00081 J	0.00157	0.01433	0.00158
Total Copper	mg/L	0.01680	0.01312	0.00652	0.01731	0.00596
Total Iron	mg/L	0.2110	0.1612	0.6166	1.764	0.4688
Total Lead	mg/L	0.00434	0.00368	0.00404	0.01992	0.00393
Total Nickel	mg/L	0.00241	0.00197 J	0.00099 J	0.00459	0.00192 J
Total Zinc	mg/L	0.1552	0.1197	0.02347	0.1313	0.03394
Dissolved Metals						
Dissolved Chromium	mg/L	0.0003 J	0.0003 J	0.0006 J	0.0025	0.0010
Dissolved Nickel	mg/L	0.0018 J	0.0017 J	ND	0.0008 J	0.0014 J
Total Hardness						
Hardness	mg/L	11.84	9.467	20.44	36.92	173.0
Field Parameters						
рН	SU	5.13	5.13	6.19	5.88	6.47

A detailed description of the sampling procedure, results, and data evaluation are included in this Sampling Report. The laboratory data validation reports and the complete laboratory analytical reports, including Quality Assurance/Quality Control (QA/QC) are attached.

2.0 INTRODUCTION

This Daily Surface Water and Outfall Sampling Results Report for March 20, 2025 (Sampling Report) was prepared by TRC Environmental Corporation, Inc., (TRC) on behalf of SPS Technologies Abington PA (SPS). The SPS facility is located at 301 Highland Avenue, Jenkintown, PA 19046 (Site). This Sampling Report was prepared to provide the off-Site surface water, outfall, and sheet flow surface water sampling results from March 20, 2025, which were collected in accordance with WSP USA Inc. Surface Water and Outfall Sampling Plan revised on March 5, 2025.

2.1 Background

The Site is currently owned by SPS Technologies. On February 17, 2025, a fire broke out at the facility causing major damage and a cessation of operation. Prior to the fire, facility operations consisted of manufacturing of bolts, nuts, screws, rivets, washers, furniture, and fixtures.

3.0 OFF-SITE SURFACE WATER INVESTIGATION

TRC collected five surface water samples at the approved upstream and downstream sampling locations along the Tookany and Tacony Creeks on March 20, 2025. The locations are located northeast and west from the facility, and downstream from the conjoined stream south from the facility. TRC collected two outfall samples and one sheet flow sample during this event as a result of the precipitation on March 20, 2025.

3.1 Surface Water, Outfall and Sheet Flow Sampling Methodology

TRC collected the surface water, outfall and sheet flow samples in accordance with the Sampling Plan. Field data collected from each location during the sampling include:

- Water depth
- Weather conditions
- Physical characteristics (clarity, appearance, odor)
- Water Quality (DO, pH, OPR, turbidity, conductivity, and temperature)
- Water velocity (visibly moving)
- Additional observations (e.g. wildlife sightings)

The field data is documented in the daily field sampling forms included as **Appendix A**, except for the infield pH measurement, which is summarized in **Table 1** for surface water samples and in **Table 2** for outfall and sheet flow samples.

3.2 Surface Water, Outfall and Sheet Flow Sampling

All samples were submitted to Pace Analytical in Westborough, Massachusetts (Certification No. 68-03671) and Pace Analytical in Mansfield, Massachusetts (Certification No. 68-02089), following chain-of-custody protocols.

3.3 Surface Water Sampling Results

Surface water samples were collected from the five approved locations in accordance with Sampling Plan for the following parameters:

- Oil & Grease
- Free Cyanide
- Total Cyanide
- Total Nickel
- Dissolved Nickel
- Total Chromium
- Dissolved Chromium
- Hexavalent Chromium (calculated for Trivalent Chromium)
- Methyl ethyl ketone (2-Butanone)
- Toluene

SPS Technologies Daily Surface Water and Outfall Sampling Results Report for March 20, 2025

• Total Hardness

The validated analytical results from surface water sampling are summarized in **Table 1**. The sampling locations are shown on **Figures 1** and **2**.

Outfall samples were collected from two approved locations and one sheet flow sample was collected in accordance with Sampling Plan for the following parameters:

- Chemical Oxygen Demand
- Total Suspended Solids
- Nitrate-Nitrite as N
- Hexavalent Chromium (calculated for Trivalent Chromium)
- Total Aluminum
- Total Copper
- Total Iron
- Total Lead
- Total Zinc
- Oil & Grease
- Free Cyanide
- Total Cyanide
- Total Nickel
- Dissolved Nickel
- Total Chromium
- Dissolved Chromium
- Methyl ethyl ketone (2-Butanone)
- Toluene
- Hardness

The validated analytical results from outfall and sheet flow sampling are summarized in **Table 2**. The sampling locations are shown on **Figure 1**.

4.0 DATA QUALITY ASSURANCE/QUALITY CONTROL MANAGEMENT

4.1 Field Quality Assurance/Quality Control Requirements.

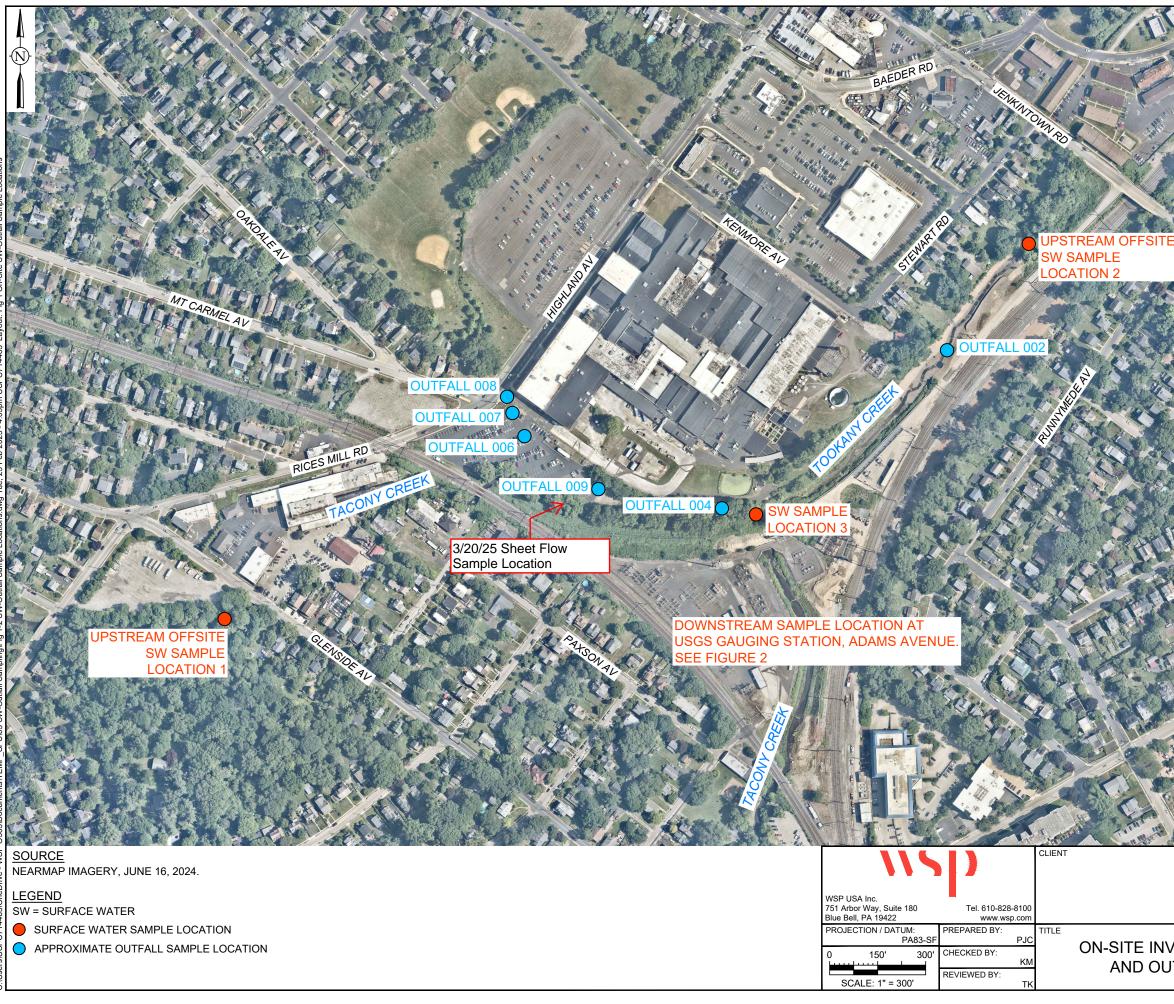
Field personnel performed data quality control (QC) verification of field measurements. This process includes equipment calibration, reviewing calibration records, and duplicate readings to ensure data accuracy. Field measurements were documented in the field information forms included as **Appendix A** and pH readings are summarized in **Table 1** and **Table 2**.

All hand equipment used during the sampling event was cleaned with Alconox and distilled water. Disposable equipment was used for sample collection and processing as appropriate. Field personnel wore disposable nitrile sampling gloves during sampling activities. Sampling gloves were discarded following collection at each sample location and replaced before handling decontaminated equipment or work surfaces.

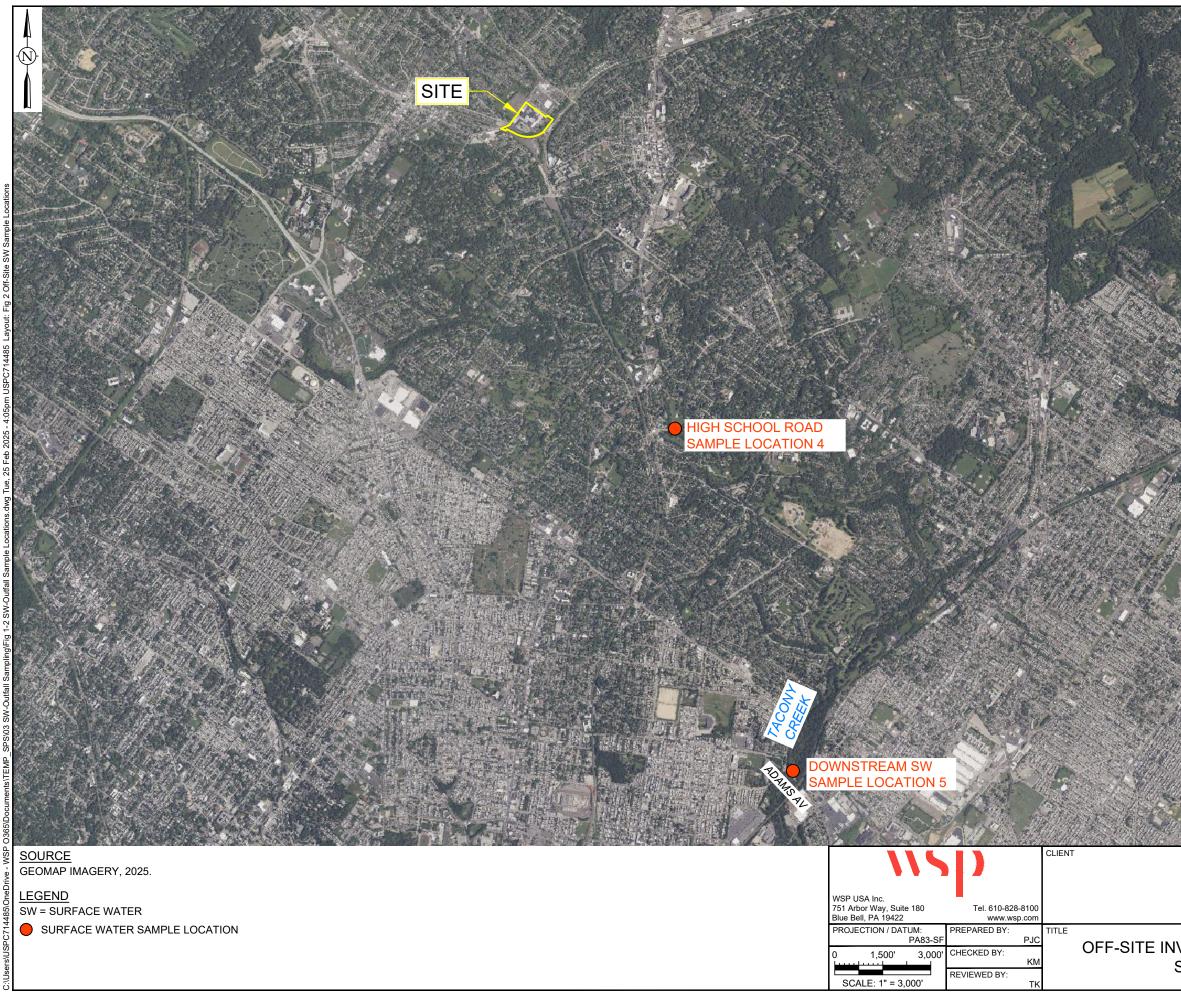
4.2 Analytical QA/QC Samples

All quality assurance and quality control (QA/QC), field duplicates and matrix spikes/matrix spike duplicates (MS/MSD) were collected in accordance with the Sampling Plan at a rate of 1 per 20 samples per day. A trip blank was included daily for volatile organic compounds (VOCs). A field blank was not collected because single-use disposable ladles were used to collect samples.

4.3 Data Evaluation


The reliability of the analytical data was evaluated to assess its suitability for use in off-Site surface water monitoring. In particular, the data's precision, accuracy, and sensitivity were evaluated based on field sampling documentation, adherence to sample holding times, and analysis of the QC samples (duplicates, spikes, and blanks). Data validation was performed in accordance with the Sampling Plan. The data validation reports are included as **Appendix B**. The laboratory analytical reports are included as **Appendix C**.

4.4 References


• SPS Technologies Sampling Plan, revised on March 5, 2025

Figures

	and the second					
		AN		Read and		
p-Cle			A.K		199	
YT I				J. L		
1/2 D						Pas
		A STAN				- X
	C.C.C.					
					279	
			S.	. Jest		
C C R R					et .	
		C. AL				
					623	
5//00	an las					
125 1		The C	EL			A PER
-				1-14	1.A.	
			4		6	2.1.0
35	LLSIDE AV	NO 12	WALNUT			
H	ILLSID		T S	4		8-34
CHE!	1		A.	10-10		
	5.5		Ker	-		
		e e	ne e		N.C.	Alta
A.C.M.		WESTAN	0			
					T ever	
A CONTRACTOR		- Hi-				1
			L.			- FEE
						and the
		A.		Ce p		A Start
						(it)
	PROJECT			E	PROJECT	NO.:
	SU					S0043268.2150
	OUTF	ALL SAMPI	LING PI	LAN	DATE:	0
					FIGURE N	BRUARY 2025
/ESTIGATI ITFALL SA				K		1

	PROJECT			PROJECT NO.:
		ACE WATE L SAMPLIN		US0043268.2150 REVISION NO.: DATE: FEBRUARY 2025
VESTIGAT SAMPLE L	ION SURF	ACE WA	TER	FIGURE NO.:

Tables

March 2025

Surface Water Analytical Results Daily Surface Water Sampling Results Report SPS Technologies Jenkintown, Pennsylvania

Sample L	ocation		Offsite SW Location 1	Sample	Upstream L	Offsite SW .ocation 2	Sample		W Sample ocation 3			SW Sampl ion 3 (Dup	-	High Sch L	ool Road S	Sample		eam SW Sa ocation 5	ample
	Field Sample I	D S	W2-032025		SI	N1-032025		SI	N3-032025		[0UP-03202	25	SV	V4-032025		SV	/5-032025	
	Lab Sample I		2516324-02		L2	2516324-01		L2	516324-03		L	2516324-0)6	L2	516324-04		L2	516324-05	
	Sampling Dat		3/20/2025		3	3/20/2025		:	3/20/2025			3/20/2025		3	/20/2025		3	/20/2025	
	Matri	×	Water			Water			Water			Water			Water			Water	
Parameter	Units	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL
Volatile Organic Compound	ds																		
Toluene	mg/L	ND		0.0010	ND		0.0010	ND		0.0010	ND		0.0010	ND		0.0010	ND		0.001
2-Butanone (MEK)	mg/L	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.010
General Chemistry																			
Chromium, Trivalent	mg/L	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.01
Chromium, Hexavalent	mg/L	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.01
Total Cyanide	mg/L	ND	UJ	0.005	ND	UJ	0.005	ND	UJ	0.005	ND	UJ	0.005	ND	UJ	0.005	ND	UJ	0.00
Free Cyanide	mg/L	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.01
Oil & Grease	mg/L	ND		4.0	ND		4.0	ND		4.0	ND		4.0	ND		4.0	ND		4.0
Total Metals																			
Total Chromium	mg/L	ND		0.00100	ND		0.00100	ND		0.00100	0.00150	J+	0.00100	ND		0.00100	ND		0.001
Total Nickel	mg/L	0.00154	J	0.00200	0.00091	J	0.00200	0.00100	J	0.00200	0.00145	J	0.00200	0.00180	J	0.00200	0.00116	J	0.002
Dissolved Metals																			
Dissolved Chromium	mg/L	0.0003	J	0.0010	0.0003	J	0.0010	0.0002	J	0.0010	0.0002	J	0.0010	ND		0.0010	0.0006	J	0.00
Dissolved Nickel	mg/L	0.0016	J	0.0020	0.0007	J	0.0020	0.0010	J	0.0020	0.0009	J	0.0020	0.0016	J	0.0020	0.0013	J	0.00
Total Hardness																			
Hardness	mg/L	254.8		0.5400	208.2		0.5400	241.6		0.5400	238.6		0.5400	227.3		0.5400	184.0		0.540
Field Parameters							•		2		•		•						
oH ¹	SU	7.97			8.05			8.00			8.00			6.82			6.40		T

Abbreviations: mg/L: milligrams per liter ND: Non-Detect Q: Qualifier RL: Reporting Limit SU: Standard Units

Qualifiers: J - Estimated Result J+ - Estimated Result, Potential High Bias U: Estimated RL

Created By: JM 3/22/2025 Checked By: JA

Table 1

March 2025

Surface Water Analytical Results Daily Outfall and Sheet Flow Sampling Results Report SPS Technologies Jenkintown, Pennsylvania

Project Number: 658978

Sample Location		O	Outfall 002		Outfall	002 (Duplio	cate)	0	utfall 006		0	utfall 009		:	Sheet Flov	N
Field	d Sample ID	0	F2-032025		DUF	P-02-03202	5	O	F6-032025		O	9-032025		9	SF1-03202	.5
	b Sample ID	L2	2516684-01		L2	516684-05		L2	516684-03		L2	516684-02		L	2516684-0)4
Sar	mpling Date	3	3/20/2025		3	3/20/2025		3	3/20/2025		3	/20/2025			3/20/2025	i
	Matrix		Water			Water			Water			Water			Water	
Parameter	Units	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL
Volatile Organic Compounds																
Toluene	mg/L	ND		0.0010	ND		0.0010	ND		0.0010	ND		0.0010	ND		0.0010
2-Butanone (MEK)	mg/L	0.0012	J	0.010	0.0011	J	0.010	ND		0.010	ND		0.010	ND		0.010
General Chemistry																
Chromium, Trivalent	mg/L	ND		0.010	ND		0.010	ND		0.010	0.014		0.010	ND		0.010
Chromium, Hexavalent	mg/L	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.010
Total Cyanide	mg/L	0.002	J	0.005	ND		0.005	0.002	J	0.005	0.003	J	0.005	0.003	J	0.005
Free Cyanide	mg/L	ND		0.010	0.004	J	0.010	ND		0.010	ND		0.010	ND		0.010
Oil & Grease	mg/L	ND		4.0	ND		4.0	ND		4.0	ND		4.0	ND		4.0
Total Suspended Solids	mg/L	18	J	5.0	10	J	5.0	23	J	5.0	32	J	10	17	J	5.0
Nitrate/Nitrite as Nitrogen	mg/L	0.37	J	0.10	0.23	J	0.10	0.35	J	0.10	0.20	J	0.10	0.42	J	0.10
Chemical Oxygen Demand	mg/L	45		20	29		20	34		20	52		20	36		20
Total Metals																
Total Aluminum	mg/L	0.4982		0.01000	0.4096		0.01000	0.4509		0.01000	1.014		0.01000	0.1802		0.01000
Total Chromium	mg/L	0.00104		0.00100	0.00081	J	0.00100	0.00157		0.00100	0.01433		0.00100	0.00158		0.00100
Total Copper	mg/L	0.01680		0.00100	0.01312		0.00100	0.00652		0.00100	0.01731		0.00100	0.00596		0.00100
Total Iron	mg/L	0.2110		0.05000	0.1612		0.05000	0.6166		0.05000	1.764		0.05000	0.4688		0.05000
Total Lead	mg/L	0.00434		0.00100	0.00368		0.00100	0.00404		0.00100	0.01992		0.00100	0.00393		0.00100
Total Nickel	mg/L	0.00241		0.00200	0.00197	J	0.00200	0.00099	J	0.00200	0.00459		0.00200	0.00192	J	0.00200
Total Zinc	mg/L	0.1552		0.00500	0.1197		0.00500	0.02347		0.00500	0.1313		0.00500	0.03394		0.00500
Dissolved Metals																-
Dissolved Chromium	mg/L	0.0003	J		0.0003	J	0.0010	0.0006	J	0.0010	0.0025		0.0010	0.0010		0.0010
Dissolved Nickel	mg/L	0.0018	J		0.0017	J	0.0020	ND		0.0020	0.0008	J	0.0020	0.0014	J	0.0020
Total Hardness																
Hardness	mg/L	11.84			9.467		0.5400	20.44		0.5400	36.92		0.5400	173.0		0.5400
Field Parameters																
pH ¹	SU	5.13			5.13			6.19			5.88			6.47		
Notes																

Table 2

Notes: 1.) Field measurements for pH were performed by TRC field personnel prior to sample collection using a Horiba U-52. Field measurements were not validated.

Abbreviations: mg/L: milligrams per liter ND: Non-Detect Q: Qualifier RL: Reporting Limit SU: Standard Units

Qualifiers: J - Estimated Result

Appendix A

Date: 3/20/2025

SURFACE WATER SAMPLE FIELD INFORMATION FORM

Wea

Project Number 658978

Site:	SPS
Location:	Aboston PA
Project Number:	658978 658978
Water Quality Meter:	HORIDA U-50 SINE UITO3/2X
Meter Calibrated @:	3/20/2025 @ 0945
Flow Meter:	Off MF Pro SIN: 236387
Sampling Date/Time:	5W5 @ 0135 SWY @ 1025 GWI@11:05
	SWZ @ 1140 SW3@ 1725
Sampler(s):	1 Spulse (Graham
Sampling Device:	Telescoric Dioper pole
Sample Characteristics:	
	Clear NO oder
Analytical Parameters:	

Additional Notes:
SWS COLLUT MELDED
5W3 WILLY DUD-032025(00.00)
Pid 0.0 9+ 91 Blations
July fish oburred
SW2 Fish observed
SWC MMADOWS OSSILVED

ather Conditions:	1	outy	H	65	L43	ming	long	n SE

SAMPLE / STATION	STATION DESCRIPTION (stream, lake river)	DATE	TIME	TOTAL DEPTH		WATER TEMP	the second s	pН	COND	ORP	TURBIDITY	DO	VELOCITY
		MM/DD/YY	hronin	inches		Celsius	ppt	SU	mS/cm	Vm	NTU	mg/L	tUsec
SW5-032025	crick	03/20/25	a state of the	12	6	10.23	0.2	6.40	0.445	329	0.6	5.65	0.262
	Sample Characteristics :	cher		ader		11 41	-	1	-				
524-632025	Crick	05/20/25	10:25	42.5	22.25	10.81	0.2	6.82	0.494	291	0.0	9.23	0.072
	Sample Characteristics :						-				10	102	Da'a
501-072025	Cruck		11:05			11,25	0.2	9.05	0.451	250	0.0	10.3	7 0.0 0.
	Sample Characteristics :	NO	oder	Clear			-	-0-		1.2	-	16 7-	7
52-032015	cruk	03/0/15	11:40	18.5	9.25	11.98	0.3	747	0.58	263	0.0	10.5.	7 0.138
	A CONTRACTOR OF A CONTRACTOR O	clear	NO	ader				_		-			20
56/3-032025	Sample Characteristics:	03/20/25	Statistical division of the local division o	30	15	12.54	0.2	8-01	96.46	1/220	0.0	8.68	0.032
500 5= 0 5	Nur	clear	NO	nuc			1					-	
	Sample Characteristics :	Cien	100					-					
A CONTRACTOR								-					
	Sample Characteristics :				-								_
			1 Contraction		-							_	
-						-						_	
				-	-								
aff Gauge Reading				2	-	-	-						
				1	1	_							>TR
													111

Page 1 of 1

Date: 3/20/2025

SURFACE WATER SAMPLE FIELD INFORMATION FORM

Site:	SPS		
Location:	Abriton	PA	
Project Number:		6	58978
Water Quality Meter:	Horiba U-	50 S/N: U110	312×
Meter Calibrated @: _	3/20/2025	@ 2035	
Flow Meter:	OTT ME PO	S/N: 336	387
Sampling Date/Time:	0F2 @ 2040	0 69 6	2/50
	0F6 @ 2230	SFIE	0 2250
Sampler(s):	J. Soulses, C	, Grahan	
Sampling Device:	D. oper pole		
Sample Characteristics:			
	TURLIS BROW	`	
Analytical Parameters:		TO FILL BE SOLD FOR	

Project Number: 658978

Collect Dup-02-032025 on OFZ (2050) Collect MS/MSD From OF9 Minnous observed @ SF1

Weather Conditions: Rain 56°F Wind 7rphs

SAMPLE / STATION	STATION DESCRIPTION (stream lake river)	DATE	TIME	TOTAL DEPTH	SAMPLE DEPTH	WATER TEMP	SALINITY	pH	COND	ORP	TURBIDITY	DO	VELOCITY
and the second second	GIAII	MM/DD/YY	hr:min	inches	1	Celsius	ppt	SU	mS/cm	mV	NTU	mg/L	ft/sec
DF2-032025	atthe	8/20/25	2040	2	1	13.02	0.0	5.13	0.0AS	386	29.1	7.34	1.960
	Sample Characteristics :	Turbid	Brow	n N	5 Ode	-	ALC: NO	-					
) F9-032025	Gitte		2150	3	1.5	12.46	0.2	5.88	0,992	365	254	7.47	0,245
	Sample Characteristics :	turig	Brow	n No	ado		1000				254		
)F6-1032025	fretty"	3/20/35	2230	9	4.5	11.90	0.1	6.19	0.197	333	69.9	11.86	2.83
	Sample Characteristics :	Tursia	Brok	s A	10 09	5m		1					
F1-032025 -	(rup)	03/29/25	2250	1	0.5	10.0	0.3	6.47	10609	323	37,8	5.98	-
	Sample Characteristics :	Slightly	turse	& Brou	n n	0 0 dur							
		. /											1
	Sample Characteristics :		Partie										
	Sample Characteristics :		-										
auge Reading													-

>TRC

Appendix B

Data Validation Report

Site:	SPS Technologies, Surface Water Sampling						
Laboratory:	Pace Analytical, Westborough and Mansfield, MA						
SDG No.:	L2516324						
Parameters:	Select Volatile Organic Compounds (VOCs), Select Metals, Hardness, Total Cyanide, Free Cyanide, Oil & Grease, Hexavalent Chromium, Trivalent Chromium						
Data Reviewer:	Jessica Esser/TRC						
Peer Reviewer:	Kristen Morin/TRC						
Date:	March 21, 2025						

Samples Reviewed and Evaluation Summary

6 Surface Water Samples:	SW1-032025, SW2-032025, SW3-032025, SW4-032025,
	SW5-032025, DUP-032025 ¹

1 Trip Blank: TRIP BLANK-032025

¹Field duplicate of SW3-032025

The above-listed samples were collected on March 20, 2025 and were analyzed for one or more of the following parameters.

- Select VOCs (toluene, 2-butanone) using EPA Method 624.1
- Select total and dissolved metals (chromium, nickel) using EPA Method 200.8
- Total hardness (by calculation) using EPA Method 200.8
- Total cyanide using Standard Methods (SM) 4500 CN-CE
- Free cyanide using SM 4500 CN-E (M)
- Oil and grease using EPA Method 1664B
- Hexavalent chromium using SM 3500 CR-B
- Trivalent chromium by calculation

Limited data validation was performed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-20-005), November 2020 and USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA-542-R-20-006), November 2020, modified for the methodologies utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
- Blanks
- * Surrogate Recoveries (VOCs only)
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- * Laboratory Control Sample (LCS) Results
- Field Duplicate Results
 - Sample Results and Reported Quantitation Limits (QLs)
- * All criteria were met.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. Qualification of the data as a result of sampling error was not required. Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select metals results that were below the lowest calibration standard and QL. These results were qualified as estimated (J) by the laboratory in the associated samples. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive results for total chromium were qualified as nondetect (U) in samples SW1-032025, SW2-032025, SW3-032025, SW4-032025, and SW5-032025 due to method blank contamination. These results can be used for project objectives as nondetects, which should not have an impact on the data usability.
- The positive result for total chromium was qualified as estimated with a potential high bias (J+) in sample DUP-032025 due to method blank contamination. This result can be used for project objectives as an estimated value, which may have a minor impact on the data usability.
- The nondetect results for total cyanide in all samples in this data set were qualified as estimated (UJ) due to a low MS percent recovery (%R). These results can be used for project objectives as nondetects with an estimated QL, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level 2 data package. It should be noted that the date of collection for the trip blank was listed as 3/17/25 on the chain-of-custody (COC). For purposes of this assessment, it was assumed the date of collection was the same as the associated samples.

Holding Times and Sample Preservation

All holding time and preservation criteria were met for all parameters.

<u>Blanks</u>

Target VOCs were not detected in the trip blank. A field blank was not submitted with the data set. With the exception of total chromium, target analytes were not detected in the associated laboratory method blanks. Total chromium was detected in the laboratory method blank associated with all samples in this data set at a concentration of 0.00025 J mg/L. The positive results for total chromium in samples SW1-032025, SW2-032025, SW3-032025, SW4-032025, and SW5-032025 were qualified as nondetect (U) at the QL since the results were < the QL. The positive result for total chromium in sample DUP-032025 was qualified as estimated with a potential high bias (J+) since the result was \geq the QL but < 10x the amount detected in the method blank.

Surrogate Recoveries (VOCs only)

All criteria were met.

MS/MSD Results

MS/MSD analyses were performed on sample SW5-032025 for VOCs, total and dissolved metals, hardness, total cyanide, free cyanide, oil and grease, and hexavalent chromium. With the exception of total cyanide, all criteria were met. The %R for total cyanide in the MS (89%) performed on sample SW5-032025 was below the laboratory acceptance criteria (90-110%). Therefore, the nondetect results for total cyanide in all samples in this data set were qualified as estimated (UJ).

Laboratory Duplicate Results

Laboratory duplicate analyses were performed on sample SW5-032025 for total cyanide, free cyanide, oil and grease, and hexavalent chromium. All criteria were met.

LCS Results

All criteria were met for all parameters.

Field Duplicate Results

Samples SW3-032025 and DUP-032025 were submitted as the field duplicate pair with this sample set. The following table summarizes the relative percent differences (RPDs) and/or absolute differences (AbsDs), where applicable, of the detected analytes after validation. The QL was used in the calculation of the AbsD for nondetect (ND) results. All criteria were met.

Analyte	QLs (mg/L)	SW3-032025 (mg/L)	DUP-032025 (mg/L)	RPD (%) or AbsD (mg/L)	Validation Action
Total Chromium	0.001	ND	0.0015 J+	AbsD = 0.0005	
Total Nickel	0.002	0.00100 J	0.00145 J	AbsD = 0.00045	
Hardness	0.54	241.6	238.6	RPD = 1.2	None; all criteria were met.
Dissolved Chromium	0.001	0.0002 J	0.0002 J	AbsD = 0	
Dissolved Nickel	0.002	0.0010 J	0.0009 J	AbsD = 0.0001	

Field duplicate criteria are as follows:

- RPD \leq 30 when positive results for both samples are \geq 5x QL
- AbsD \leq QL when one or both results are < 5x QL

Sample Results and Reported Quantitation Limits

Select metals results were reported that were below the lowest calibration standard level and QL. These results were qualified as estimated (J) in the associated samples by the laboratory.

There were no dilutions performed on the samples in this data set.

The total and dissolved metal results were evaluated during data validation to identify any dissolved concentrations that were significantly higher than the associated total concentration. The evaluation was based on the following criteria to determine significance: percent difference (%D) should be \leq 20% when dissolved results are greater than total results and both results are \geq 5x the QL. If the dissolved result was > the total and one or both results were < 5x the QL, then the AbsD should be \leq 2x the QL. These criteria were met for all samples.

QUALIFIED FORM 1s

VOLATILES

			Serial_No	0:03212517:35
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516324-01 SW1-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 11:05 03/20/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/21/25 11:44 GMT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifie		ptance iteria
Pentafluorobenzene			81		6	60-140
Fluorobenzene			74		6	60-140
4-Bromofluorobenzene			115		6	60-140

			Serial_No	0:03212517:35
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516324-02 SW2-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 11:40 03/20/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/21/25 12:16 GMT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifie		ptance iteria
Pentafluorobenzene			81		6	60-140
Fluorobenzene			72		6	60-140
4-Bromofluorobenzene			116		6	60-140

			Serial_No	0:03212517:35
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516324-03 SW3-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 12:25 03/20/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/21/25 12:48 GMT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			79		6	60-140
Fluorobenzene			72		6	60-140
4-Bromofluorobenzene			117		6	60-140

			Serial_No	0:03212517:35
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516324-04 SW4-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 10:25 03/20/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/21/25 13:20 GMT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifie		ptance iteria
Pentafluorobenzene			77		6	60-140
Fluorobenzene			70		6	60-140
4-Bromofluorobenzene			115		6	60-140

			Serial_No	0:03212517:35
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516324-05 SW5-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 09:35 03/20/25 Refer to COC
Sample Depth:				
Matrix:	Water			
Analytical Method: Analytical Date: Analyst:	128,624.1 03/21/25 13:52 GMT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			77		6	60-140
Fluorobenzene			73		6	60-140
4-Bromofluorobenzene			116		6	60-140

			Serial_No	0:03212517:35
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516324-06 DUP-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 00:00 03/20/25 Refer to COC
Sample Depth:				
Matrix:	Water			
Analytical Method: Analytical Date: Analyst:	128,624.1 03/21/25 14:24 GMT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifie		ptance iteria
Pentafluorobenzene			77		6	60-140
Fluorobenzene			72		6	60-140
4-Bromofluorobenzene			123		6	60-140

			Serial_N	0:03212517:35
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25
		SAMPLE RESULTS		
Lab ID:	L2516324-07		Date Collected:	03/17/25 00:00
Client ID:	TRIP BLANK-032025		Date Received:	03/20/25
Sample Location:	JENKINTOWN, PA		Field Prep:	None
Sample Depth:				
Matrix:	Water			
Analytical Method:	128,624.1			
Analytical Date:	03/21/25 14:56			
Analyst:	GMT			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			76		6	60-140
Fluorobenzene			69		6	60-140
4-Bromofluorobenzene			119		6	60-140

METALS

Project Name: Project Number:	SPS TECHNOLOGIES 658978			CAMDI	SAMPLE RESULTS			Lab Number: Report Date:		L2516324 03/21/25	
Lab ID: Client ID: Sample Location:	SW1-0	324-01 032025 INTOWN,	PA	SAMPL	o/			Date Collected: Date Received: Field Prep:		03/20/25 11:05 03/20/25 Refer to COC	
Sample Depth: Matrix: Parameter	Water	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										-
	0.00043			0.00100	0.00047		00/04/05 00 4	4 00/04/05 40 00		2 200 8	NTD
Chromium, Total			mg/l	0.00100	0.00017			4 03/21/25 12:08		3,200.8 3,200.8	NTB
Nickel, Total	0.00091	J	mg/l	0.00200	0.00055	1	03/21/25 08:14	4 03/21/25 12:08	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculatio	on) - Mans	field Lab								
Hardness	208.2		mg/l	0.5400	NA	1	03/21/25 08:14	4 03/21/25 12:08	EPA 3005A	3,200.8	NTB
General Chemistry -	• Mansfie	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/21/25 12:08	NA	107,-	
Dissolved Metals - N	/ansfield	lah	-								
				0.0010	0.0000	4	00/04/05 00 4	4 02/24/25 4 2:40		3,200.8	
Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1		4 03/21/25 12:46			NTB
Nickel, Dissolved	0.0007	J	mg/l	0.0020	0.0006	1	03/21/25 08:14	4 03/21/25 12:46	EPA 3005A	3,200.8	NTB

Project Name: Project Number:		SPS TECHNOLOGIES 658978 L2516324-02 SW2-032025 JENKINTOWN, PA			SAMPLE RESULTS			Lab Number: Report Date:		L2516324 03/21/25	
Lab ID: Client ID: Sample Location:	SW2-0							Date Collected: Date Received: Field Prep:		03/20/25 11:40 03/20/25 Refer to COC	
Sample Depth: Matrix: Parameter	Water Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lob										
										0.000.0	
Chromium, Total	0.00021	ND 1	mg/l	0.00100	0.00017	1	03/21/25 08:14	103/21/25 12:12	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00154	J	mg/l	0.00200	0.00055	1	03/21/25 08:14	1 03/21/25 12:12	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculatio	n) - Mansf	ield Lab								
Hardness	254.8		mg/l	0.5400	NA	1	03/21/25 08:14	1 03/21/25 12:12	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfiel	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/21/25 12:12	NA	107,-	
Dissolved Metals - N	/Jansfield	Lab									
Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	03/21/25 08:14	1 03/21/25 12:51	EPA 3005A	3,200.8	NTB
	0.0016		•	0.0020	0.0002					3,200.8	NTB
Nickel, Dissolved	0.0010	J	mg/l	0.0020	0.0006	1	03/21/25 08:14	1 03/21/25 12:51	EPA 3003A	3,200.0	INID

								-	_		
Project Name:	SPS T	SPS TECHNOLOGIES						mber:	L25163	24	
Project Number:	65897	8			SAMPLE RESULTS			Date:	03/21/2		
				SAMPL							
Lab ID:		324-03				Date Collected:		03/20/25			
Client ID:)32025						eceived:	03/20/25		
Sample Location:	JENKI	NTOWN, F	PA				Field Pr	ep:	Refer to	COC	
Sample Depth:											
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Matala Mana	field Lab										
Total Metals - Mans											
Chromium, Total	0.00028	ND J	mg/l	0.00100	0.00017	1	03/21/25 08:14	4 03/21/25 14:01	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00100	J	mg/l	0.00200	0.00055	1	03/21/25 08:14	4 03/21/25 14:01	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculatio	n) - Mansfi	eld Lab								
Hardness	241.6		mg/l	0.5400	NA	1	03/21/25 08:14	4 03/21/25 14:01	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfiel	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/21/25 14:01	NA	107,-	
Dissolved Metals - N	/lansfield	Lab									
Chromium, Dissolved	0.0002	J	mg/l	0.0010	0.0002	1	03/21/25 08:14	4 03/21/25 12:55	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0010	J	mg/l	0.0020	0.0006	1	03/21/25 08:14	4 03/21/25 12:55	EPA 3005A	3,200.8	NTB

Project Name: Project Number:		SPS TECHNOLOGIES 658978 L2516324-04 SW4-032025 JENKINTOWN, PA			SAMPLE RESULTS			Lab Number: Report Date: Date Collected: Date Received: Field Prep:		L2516324 03/21/25 03/20/25 10:25 03/20/25 Refer to COC	
Lab ID: Client ID: Sample Location:	SW4-0										
Sample Depth: Matrix: Parameter	Water	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										-
	0.00018	ND J		0.00400	0.00047		00/04/05 00 4	4 00/04/05 4 4:05		3,200.8	NTB
Chromium, Total	0.00180	0	mg/l	0.00100	0.00017			4 03/21/25 14:05 4 03/21/25 14:05		3,200.8	NTB
Nickel, Total	0.00180	J	mg/l	0.00200	0.00055	I	03/21/25 06.14	4 03/2 1/23 14.03	EFA 3003A	5,200.0	
Total Hardness (by	calculatio	on) - Mansfi	eld Lab								
Hardness	227.3		mg/l	0.5400	NA	1	03/21/25 08:14	4 03/21/25 14:05	EPA 3005A	3,200.8	NTB
General Chemistry -	- Mansfie	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/21/25 14:05	NA	107,-	
Dissolved Metals - N	Mansfield	Lab									
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	03/21/25 08:14	4 03/21/25 13:00	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0016	J	mg/l	0.0020	0.0006	1	03/21/25 08:14	4 03/21/25 13:00	EPA 3005A	3,200.8	NTB

Project Name: Project Number:		SPS TECHNOLOGIES 658978 L2516324-05 SW5-032025 JENKINTOWN, PA			SAMPLE RESULTS			Lab Number: Report Date:		L2516324 03/21/25	
Lab ID: Client ID: Sample Location:	SW5-0							Date Collected: Date Received: Field Prep:		03/20/25 09:35 03/20/25 Refer to COC	
Sample Depth: Matrix: Parameter	Water	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lob										
Chromium, Total	0.00020	ND J	mg/l	0.00100	0.00017	1	03/21/25 08:14	4 03/21/25 11:54	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00116	J	mg/l	0.00200	0.00055	1	03/21/25 08:14	4 03/21/25 11:54	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculatio	on) - Mansfi	eld Lab								
Hardness	184.0		mg/l	0.5400	NA	1	03/21/25 08:14	4 03/21/25 11:54	EPA 3005A	3,200.8	NTB
General Chemistry -	- Mansfie	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/21/25 11:54	NA	107,-	
Dissolved Metals - N	Mansfield	Lab									
Chromium, Dissolved	0.0006	J	mg/l	0.0010	0.0002	1	02/21/25 09.1	4 03/21/25 12:32		3,200.8	NTB
			•								
Nickel, Dissolved	0.0013	J	mg/l	0.0020	0.0006	1	03/21/25 08:14	4 03/21/25 12:32	EPA 3005A	3,200.8	NTB

Serial_No:03212517:35

Project Name: Project Number:	SPS T 65897	ECHNOLC 8	OGIES	SAMPL		ште	Lab Nu Report		L2516324 03/21/25		
Lab ID: Client ID: Sample Location:	L25163 DUP-0 JENKII		PA	SAWFL	ERES		Date Co Date Re Field Pre	eceived:	03/20/25 03/20/25 Refer to		
Sample Depth: Matrix: Parameter	Water	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansf	ald Lab										, ,
		1.									
Chromium, Total	0.00150	J+	mg/l	0.00100	0.00017	1	03/21/25 08:14	03/21/25 12:26	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00145	J	mg/l	0.00200	0.00055	1	03/21/25 08:14	03/21/25 12:26	EPA 3005A	3,200.8	NTB
Total Hardness (by c	alculation	n) - Mansfi	eld Lab								
Hardness	238.6		mg/l	0.5400	NA	1	03/21/25 08:14	1 03/21/25 12:26	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfiel	d I ah									
	ND			0.040	0.000	4		02/04/05 40:00	NIA	107,-	
Chromium, Trivalent	טא		mg/l	0.010	0.003	1		03/21/25 12:26	NA	107,-	
Dissolved Metals - M	lansfield	Lab									
Chromium, Dissolved	0.0002	J	mg/l	0.0010	0.0002	1	03/21/25 08:14	03/21/25 13:05	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0009	J	mg/l	0.0020	0.0006	1	03/21/25 08:14	03/21/25 13:05	EPA 3005A	3,200.8	NTB

INORGANICS & MISCELLANEOUS

Lab Number: L2516324 Report Date: 03/21/25

Project Name:SPS TECHNOLOGIESProject Number:658978

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L2516324-0 SW1-03202	5					Date Received:		03/20/25 11:05 03/20/25 Refer to COC	
Sample Location: Sample Depth: Matrix:	JENKINTOV Water	VIN, FA						Tep.		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Cyanide, Total	ND UJ		mg/l	0.005	0.001	1	03/21/25 11:40	03/21/25 16:06	121,4500CN-CE	JRO

Cyanide, Free	ND	mg/l	0.010	0.003	1	-	03/21/25 07:13	121,4500CN-	KAF
Oil & Grease, Hem-Grav	ND	mg/l	4.0	4.0	1	03/21/25 07:26	03/21/25 11:00	E(M) 140,1664B	TPR
Chromium, Hexavalent	ND	mg/l	0.010	0.003	1	03/21/25 08:50	03/21/25 09:32	121,3500CR-B	DMO

Lab Number: L2516324 Report Date: 03/21/25

Project Name:SPS TECHNOLOGIESProject Number:658978

SAMPLE RESULTS

Lab ID:	L2516324-0	2					Date C	ollected: 0	3/20/25 11:40	
Client ID:	SW2-03202	5					Date R	eceived: 0	3/20/25	
Sample Location:	JENKINTOV	VN, PA					Field P	rep: F	Refer to COC	
Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Cyanide, Total	ND UJ		mg/l	0.005	0.001	1	03/21/25 11:40	03/21/25 16:07	121,4500CN-CE	JRO

Cyanide, Free	ND	mg/l	0.010	0.003	1	-	03/21/25 07:13	121,4500CN- E(M)	KAF
Oil & Grease, Hem-Grav	ND	mg/l	4.0	4.0	1	03/21/25 07:26	03/21/25 10:58	140,1664B	TPR
Chromium, Hexavalent	ND	mg/l	0.010	0.003	1	03/21/25 08:50	03/21/25 09:34	121,3500CR-B	DMO

Pace

Lab Number: L2516324 Report Date: 03/21/25

Project Name:SPS TECHNOLOGIESProject Number:658978

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L2516324-0 SW3-03202 JENKINTOV				Date Received:		03/20/25 12:25 03/20/25 Refer to COC			
Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Cyanide, Total	ND UJ		mg/l	0.005	0.001	1	03/21/25 11:40	03/21/25 16:08	121,4500CN-CE	JRO
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/21/25 07:13	121,4500CN-	KAF

Oyaniac, mee	ND	iiig/i	0.010	0.000		-	00/21/20 01.10	121,4000N	1.7.1	
Oil & Grease, Hem-Grav	ND	mg/l	4.0	4.0	1	03/21/25 07:26	03/21/25 11:01	E (M) 140,1664B	TPR	
Chromium, Hexavalent	ND	mg/l	0.010	0.003	1	03/21/25 08:50	03/21/25 09:35	121,3500CR-B	DMO	

Pace

Lab Number: L2516324 **Report Date:** 03/21/25

03/21/25 08:50 03/21/25 09:35 121,3500CR-B

Project Name: SPS TECHNOLOGIES Project Number: 658978

ND

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	SW4-0	2516324-04 3W4-032025 ENKINTOWN, PA							Received: C	03/20/25 10:25 03/20/25 Refer to COC	
Sample Depth: Matrix:	Water										
Parameter	R	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stboroug	gh Lab)								
Cyanide, Total	ND	UJ		mg/l	0.005	0.001	1	03/21/25 11:40	03/21/25 16:09	121,4500CN-CE	JRO
Cyanide, Free	ND			mg/l	0.010	0.003	1	-	03/21/25 07:13	,	KAF
Oil & Grease, Hem-Grav	ND			mg/l	4.0	4.0	1	03/21/25 07:26	03/21/25 11:05	E(M) 140,1664B	TPR

0.003

1

0.010

mg/l

DMO

Chromium, Hexavalent

Serial No:03212517:35	Serial	No:03212517:35
-----------------------	--------	----------------

Lab Number: L2516324 **Report Date:** 03/21/25

03/21/25 08:50 03/21/25 09:30 121,3500CR-B

Project Name: SPS TECHNOLOGIES Project Number: 658978

ND

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L25163 SW5-03 JENKIN	3202	5						eceived: C	03/20/25 09:35 03/20/25 Refer to COC	
Sample Depth: Matrix:	Water										
Parameter	Re	esult	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborougł	n Lat)								
Cyanide, Total	ND	UJ		mg/l	0.005	0.001	1	03/21/25 11:40	03/21/25 16:10	121,4500CN-CE	JRO
Cyanide, Free	ND			mg/l	0.010	0.003	1	-	03/21/25 07:13	,	KAF
Oil & Grease, Hem-Grav	ND			mg/l	4.0	4.0	1	03/21/25 07:26	03/21/25 08:43	E(M) 140,1664B	TPR

0.003

1

0.010

mg/l

Pace

DMO

Chromium, Hexavalent

Serial No:03212517:35	Serial	No:03212517:35
-----------------------	--------	----------------

Lab Number: L2516324 **Report Date:** 03/21/25

03/21/25 08:50 03/21/25 09:36 121,3500CR-B

Project Name: SPS TECHNOLOGIES Project Number: 658978

ND

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L25163 DUP-00 JENKIN	3202	5						eceived: 0	03/20/25 00:00 03/20/25 Refer to COC	
Sample Depth: Matrix:	Water										
Parameter	Re	esult	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stboroug	h Lat)								
Cyanide, Total	ND	UJ		mg/l	0.005	0.001	1	03/21/25 11:40	03/21/25 16:16	121,4500CN-CE	JRO
Cyanide, Free	ND			mg/l	0.010	0.003	1	-	03/21/25 07:13	,	KAF
Oil & Grease, Hem-Grav	ND			mg/l	4.0	4.0	1	03/21/25 07:26	03/21/25 11:09	E(M) 140,1664B	TPR

0.003

1

0.010

mg/l

4	\mathcal{F}_a	ce	
-	u	00	

DMO

Chromium, Hexavalent

Data Validation Report

Site:	SPS Technologies, Outfall and Sheet Flow Sampling						
Laboratory:	Pace Analytical, Westborough and Mansfield, MA						
SDG No.:	L2516684						
Parameters:	Select Volatile Organic Compounds (VOCs), Select Metals, Hardness, Total Suspended Solids (TSS), Total Cyanide, Free Cyanide, Nitrate/Nitrite, Chemical Oxygen Demand (COD), Oil & Grease, Hexavalent Chromium, Trivalent Chromium						
Data Reviewer:	Jessica Esser/TRC						
Peer Reviewer:	Nancy Bergstrom/TRC						
Date:	March 22, 2025						

Samples Reviewed and Evaluation Summary

4 Outfall Samples:	OF2-032025, OF6-032025, OF9-032025, DUP-02-032025 ¹
1 Sheet Flow Sample:	SF1-032025
1 Trip Blank:	TRIP BLANK-02-032025

¹Field duplicate of OF2-032025

The above-listed samples were collected on March 20, 2025 and were analyzed for one or more of the following parameters.

- Select VOCs (toluene, 2-butanone) using EPA Method 624.1
- Select total metals (aluminum, chromium, copper, iron, lead, nickel, zinc) using EPA Method 200.8
- Select dissolved metals (chromium, nickel) using EPA Method 200.8
- Total hardness (by calculation) using EPA Method 200.8
- TSS using Standard Methods (SM) 2540D
- Total cyanide using SM 4500 CN-CE
- Free cyanide using SM 4500 CN-E (M)
- Nitrate/nitrite using EPA Method 353.2
- COD using EPA Method 410.4
- Oil and grease using EPA Method 1664B
- Hexavalent chromium using SM 3500 CR-B
- Trivalent chromium by calculation

Limited data validation was performed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-20-005), November 2020 and USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA-542-R-20-006), November 2020, modified for the methodologies utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
- * Blanks

- * Surrogate Recoveries (VOCs only)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
 - Laboratory Control Sample (LCS) Results
 - Field Duplicate Results
 - Sample Results and Reported Quantitation Limits (QLs)
- * All criteria were met.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. Qualifications applied to the data as a result of sampling error are discussed below.

• The positive results for TSS and nitrate/nitrite in all samples in this data set were qualified as estimated (J) due to field duplicate variability. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

Qualifications applied to the data as a result of analytical error are discussed below.

 Potential uncertainty exists for select VOC, metals, total cyanide and free cyanide results that were below the lowest calibration standard and QL. These results were qualified as estimated (J) by the laboratory in the associated samples. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level 2 data package with the following exceptions/notes.

- The date of collection for the trip blank was listed as 3/16/25 on the chain-of-custody (COC); the laboratory logged in the collection date for this sample as 3/20/25 (i.e., the same date of collection as the associated samples). For purposes of this assessment, it was assumed the date of collection was the same as the associated samples and the laboratory was not contacted about this discrepancy.
- Total dissolved solids (TDS) by SM 2540D was requested on the COC; however, TSS by SM 2540D was reported. It was confirmed with the project team during this validation that TSS by SM 2540D was the correct analysis.
- The laboratory performed MS/laboratory duplicate analyses on sample OF9-032025 for nitrate/nitrite and COD rather than MS/MSD analyses as requested on the COC.
- MS/MSD analyses were not performed on sample OF9-032025 for SM 2540D as requested on the COC; a laboratory duplicate analysis was performed instead due to the nature of the analysis.

There is no impact on the data usability due to these issues and no validation actions were taken on this basis.

Holding Times and Sample Preservation

All holding time and preservation criteria were met for all parameters.

<u>Blanks</u>

Target analytes were not detected in the associated laboratory method blanks. Target VOCs were not detected in the trip blank. A field blank was not submitted with the data set.

Surrogate Recoveries (VOCs only)

All criteria were met.

MS/MSD Results

MS/MSD analyses were performed on sample OF9-032025 for VOCs, total and dissolved metals, hardness, total cyanide, free cyanide, oil and grease, and hexavalent chromium. MS analyses were performed on sample OF9-032025 for nitrate/nitrite and COD. All criteria were met.

Laboratory Duplicate Results

Laboratory duplicate analyses were performed on sample OF9-032025 for hexavalent chromium, TSS, free cyanide, total cyanide, nitrate/nitrite, COD, and oil and grease. All criteria were met.

LCS Results

All criteria were met for all parameters.

Field Duplicate Results

Samples OF2-032025 and DUP-02-032025 were submitted as the field duplicate pair with this sample set. The following table summarizes the relative percent differences (RPDs) and/or absolute differences (AbsDs), where applicable, of the detected analytes after validation. The QL was used in the calculation of the AbsD for nondetect (ND) results. With the exceptions listed in the table below, all criteria were met.

Analyte	QLs (mg/L)	OF2-032025 (mg/L)	DUP-02- 032025 (mg/L)	RPD (%) or AbsD (mg/L)	Validation Action
TSS	5.0	18	10	AbsD = 8 (≥QL)	The positive results for TSS and nitrate/nitrite in all
Nitrate/Nitrite	0.10	0.37	0.23	AbsD = 0.14 (≥QL)	samples in this data set were qualified as estimated (J).
2-Butanone	0.010	0.0012 J	0.0011 J	AbsD = 0.0004	
Total Aluminum	0.010	0.4982	0.4096	RPD = 19.5	
Total Chromium	0.001	0.00104	0.00081 J	AbsD = 0.00023	
Total Copper	0.001	0.0168	0.01312	RPD = 24.6	
Total Iron	0.050	0.211	0.1612	AbsD = 0.0498	
Total Lead	0.001	0.00434	0.00368	AbsD = 0.00066	Nono: all critoria wore mot
Total Nickel	0.002	0.00241	0.00197 J	AbsD = 0.00044	None; all criteria were met.
Total Zinc	0.005	0.1552	0.1197	RPD = 25.8	
Hardness	0.54	11.84	9.467	RPD = 22.3	
Dissolved Chromium	0.001	0.0003 J	0.00003	AbsD = 0	
Dissolved Nickel	0.002	0.0018 J	0.0017	AbsD = 0.0001	
Total Cyanide	0.005	0.002 J	ND	AbsD = 0.003	

Analyte	QLs (mg/L)	OF2-032025 (mg/L)	DUP-02- 032025 (mg/L)	RPD (%) or AbsD (mg/L)	Validation Action
Free Cyanide	0.010	ND	0.004 J	AbsD = 0.006	None, ell'oritoria wore met
COD	20	45	29	AbsD = 16	None; all criteria were met.

Field duplicate criteria are as follows:

- RPD \leq 30 when positive results for both samples are \geq 5x QL
- AbsD \leq QL when one or both results are < 5x QL

Sample Results and Reported Quantitation Limits

Select VOC, metals, total cyanide, and free cyanide results were reported that were below the lowest calibration standard level and QL. These results were qualified as estimated (J) in the associated samples by the laboratory.

There was one dilution performed on the samples in this data set. Sample OF9-032025 was diluted 2-fold for the analysis of TSS. The QL was elevated accordingly, and the dilution was associated with a positive detection above the QL.

The total and dissolved metal results were evaluated during data validation to identify any dissolved concentrations that were significantly higher than the associated total concentration. The evaluation was based on the following criteria to determine significance: percent difference (%D) should be \leq 20% when dissolved results are greater than total results and both results are \geq 5x the QL. If the dissolved result was > the total and one or both results were < 5x the QL, then the AbsD should be \leq 2x the QL. These criteria were met for all samples.

QUALIFIED FORM 1s

VOLATILES

			Serial_No	0:03222519:23
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516684-01 OF2-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 20:40 03/21/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/22/25 11:49 JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	0.0012	J	mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			89		6	60-140
Fluorobenzene			71		6	60-140
4-Bromofluorobenzene			92		e	60-140

			Serial_No	0:03222519:23
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516684-02 OF9-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 21:50 03/21/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/22/25 11:15 JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			89		6	60-140
Fluorobenzene			69		6	60-140
4-Bromofluorobenzene			93		6	60-140

			Serial_No	0:03222519:23
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516684-03 OF6-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 22:30 03/21/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/22/25 10:40 JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			88		6	60-140
Fluorobenzene			70		6	60-140
4-Bromofluorobenzene			92		6	60-140

			Serial_No	o:03222519:23
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516684-04 SF1-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 22:50 03/21/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/22/25 10:06 JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			86		6	60-140
Fluorobenzene			71		6	60-140
4-Bromofluorobenzene			93		e	60-140

			Serial_No	0:03222519:23
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516684-05 DUP-02-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 20:50 03/21/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/22/25 09:32 JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	0.0011	J	mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifie		ptance iteria
Pentafluorobenzene			91		6	60-140
Fluorobenzene			71		6	60-140
4-Bromofluorobenzene			95		e	60-140

Pace

			Serial_N	o:03222519:23
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID:	L2516684-06		Date Collected:	03/20/25 00:00
Client ID:	TRIP BLANK-02-032025		Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA		Field Prep:	None
Sample Depth:				
Matrix:	Water			
Analytical Method:	128,624.1			
Analytical Date:	03/22/25 08:58			
Analyst:	JKH			
· · · · · · · · · · · · · · · · · · ·	••••			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			90		6	60-140
Fluorobenzene			71		6	60-140
4-Bromofluorobenzene			94		6	60-140

Pace

METALS

Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID:	L2516684-01		Date Collected:	03/20/25 20:40
Client ID:	OF2-032025		Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.4982		mg/l	0.01000	0.00327	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC
Chromium, Total	0.00104		mg/l	0.00100	0.00017	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC
Copper, Total	0.01680		mg/l	0.00100	0.00038	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC
Iron, Total	0.2110		mg/l	0.05000	0.01910	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC
Lead, Total	0.00434		mg/l	0.00100	0.00034	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00241		mg/l	0.00200	0.00055	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC
Zinc, Total	0.1552		mg/l	0.00500	0.00341	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC
Total Hardness (by	calculatio	n) - Mansfi	eld Lab								
Hardness	11.84		mg/l	0.5400	NA	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC

General Chemistry - Mansfield Lab								
Chromium, Trivalent	ND	mg/l	0.010	0.003	1	03/22/25 12:15	NA	107,-
Dissolved Metals - I	Mansfield Lab							

Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	03/22/25 08:06 03/22/25 13:37 EPA 3005A	3,200.8	MRC
Nickel, Dissolved	0.0018	J	mg/l	0.0020	0.0006	1	03/22/25 08:06 03/22/25 13:37 EPA 3005A	3,200.8	MRC

Pace

Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID:	L2516684-02		Date Collected:	03/20/25 21:50
Client ID:	OF9-032025		Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Aluminum, Total	1.014		mg/l	0.01000	0.00327	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC
Chromium, Total	0.01433		mg/l	0.00100	0.00017	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC
Copper, Total	0.01731		mg/l	0.00100	0.00038	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC
Iron, Total	1.764		mg/l	0.05000	0.01910	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC
Lead, Total	0.01992		mg/l	0.00100	0.00034	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00459		mg/l	0.00200	0.00055	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC
Zinc, Total	0.1313		mg/l	0.00500	0.00341	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC
Total Hardness (b	oy calculatio	n) - Mansfi	eld Lab								
Hardness	36.92		mg/l	0.5400	NA	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC

General Chemistry - Mansfield Lab											
Chromium, Trivalent	0.014	mg/l	0.010	0.003	1	03/22/25 12:01	NA	107,-			
Dissolved Metals - Mansfield Lab											

Chromium, Dissolved	0.0025		mg/l	0.0010	0.0002	1	03/22/25 08:06 03/22/25 13:23 EPA 3005A	3,200.8	MRC
Nickel, Dissolved	0.0008	J	mg/l	0.0020	0.0006	1	03/22/25 08:06 03/22/25 13:23 EPA 3005A	3,200.8	MRC

Pace

Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID:	L2516684-03		Date Collected:	03/20/25 22:30
Client ID:	OF6-032025		Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Aluminum, Total	0.4509		mg/l	0.01000	0.00327	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC
Chromium, Total	0.00157		mg/l	0.00100	0.00017	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC
Copper, Total	0.00652		mg/l	0.00100	0.00038	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC
Iron, Total	0.6166		mg/l	0.05000	0.01910	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC
Lead, Total	0.00404		mg/l	0.00100	0.00034	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00099	J	mg/l	0.00200	0.00055	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC
Zinc, Total	0.02347		mg/l	0.00500	0.00341	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC
Total Hardness (b	y calculatio	n) - Mansfi	eld Lab								
Hardness	20.44		mg/l	0.5400	NA	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC

General Chemistry - Mansfield Lab										
Chromium, Trivalent	ND	mg/l	0.010	0.003	1	03/22/25 12:19	NA	107,-		
Dissolved Metals - N	Mansfield Lab									

Chromium, Dissolved	0.0006	J	mg/l	0.0010	0.0002	1	03/22/25 08:06 03/22/25 13:41 EPA 3005A	3,200.8	MRC
Nickel, Dissolved	ND		mg/l	0.0020	0.0006	1	03/22/25 08:06 03/22/25 13:41 EPA 3005A	3,200.8	MRC

Pace

Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID:	L2516684-04		Date Collected:	03/20/25 22:50
Client ID:	SF1-032025		Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.1802		mg/l	0.01000	0.00327	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC
Chromium, Total	0.00158		mg/l	0.00100	0.00017	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC
Copper, Total	0.00596		mg/l	0.00100	0.00038	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC
Iron, Total	0.4688		mg/l	0.05000	0.01910	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC
Lead, Total	0.00393		mg/l	0.00100	0.00034	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00192	J	mg/l	0.00200	0.00055	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC
Zinc, Total	0.03394		mg/l	0.00500	0.00341	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC
Total Hardness (by calculation) - Mansfield Lab											
Hardness	173.0		mg/l	0.5400	NA	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC

General Chemistry - Mansfield Lab									
Chromium, Trivalent	ND	mg/l	0.010	0.003	1	03/22/25 12:24	NA	107,-	
Dissolved Metals - Mansfield Lab									

Chromium, Dissolved	0.0010		mg/l	0.0010	0.0002	1	03/22/25 08:06 03/22/25 13:46 EPA 3005A	3,200.8	MRC
Nickel, Dissolved	0.0014	J	mg/l	0.0020	0.0006	1	03/22/25 08:06 03/22/25 13:46 EPA 3005A	3,200.8	MRC

Pace

Project Name:	SPS TECHNOLOGIES	Lab Number:	L2516684
Project Number:	658978	Report Date:	03/22/25
	SAMPLE RESULTS		
Lab ID:	L2516684-05	Date Collected:	03/20/25 20:50
Client ID:	DUP-02-032025	Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA	Field Prep:	Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Aluminum, Total	0.4096		mg/l	0.01000	0.00327	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC
Chromium, Total	0.00081	J	mg/l	0.00100	0.00017	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC
Copper, Total	0.01312		mg/l	0.00100	0.00038	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC
Iron, Total	0.1612		mg/l	0.05000	0.01910	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC
Lead, Total	0.00368		mg/l	0.00100	0.00034	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00197	J	mg/l	0.00200	0.00055	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC
Zinc, Total	0.1197		mg/l	0.00500	0.00341	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC
Total Hardness (b	by calculatio	n) - Mansfi	eld Lab								
Hardness	9.467		mg/l	0.5400	NA	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC

General Chemistry	- Mansfield Lab								
Chromium, Trivalent	ND	mg/l	0.010	0.003	1	03/22/25 12:48	NA	107,-	
Dissolved Metals -	Mansfield Lab								

Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	03/22/25 08:06 03/22/25 13:50 EPA 3005A	3,200.8	MRC
Nickel, Dissolved	0.0017	J	mg/l	0.0020	0.0006	1	03/22/25 08:06 03/22/25 13:50 EPA 3005A	3,200.8	MRC

Pace

INORGANICS & MISCELLANEOUS

L2516684

03/22/25

Lab Number:

Report Date:

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab ID:	L2516684-01	Date Collected:	03/20/25 20:40
Client ID:	OF2-032025	Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA	Field Prep:	Refer to COC

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
General Chemistry - Wes	stborough La	b								
Solids, Total Suspended	18.	J	mg/l	5.0	NA	1	-	03/21/25 20:47	121,2540D	REM
Cyanide, Total	0.002	J	mg/l	0.005	0.001	1	03/22/25 02:25	03/22/25 14:08	121,4500CN-CE	SRM
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/21/25 18:50	121,4500CN-	MRM
Nitrogen, Nitrate/Nitrite	0.37	J	mg/l	0.10	0.046	1	-	03/22/25 06:58	E(M) 44,353.2	KAF
Chemical Oxygen Demand	45.		mg/l	20	6.0	1	03/22/25 09:20	03/22/25 12:52	44,410.4	CVN
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/22/25 11:18	03/22/25 15:06	140,1664B	IYM
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/21/25 18:00	03/21/25 18:15	121,3500CR-B	MRM

Pace

L2516684

03/22/25

Lab Number:

Report Date:

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab ID:	L2516684-02	Date Collected:	03/20/25 21:50
Client ID:	OF9-032025	Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA	Field Prep:	Refer to COC

Sample Depth: Matrix:

Matrix.	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	b								
Solids, Total Suspended	32.	J	mg/l	10	NA	2	-	03/21/25 20:47	121,2540D	REM
Cyanide, Total	0.003	J	mg/l	0.005	0.001	1	03/22/25 02:25	03/22/25 14:09	121,4500CN-CE	SRM
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/21/25 18:50	121,4500CN-	MRM
Nitrogen, Nitrate/Nitrite	0.20	J	mg/l	0.10	0.046	1	-	03/22/25 06:59	E(M) 44,353.2	KAF
Chemical Oxygen Demand	52.		mg/l	20	6.0	1	03/22/25 09:20	03/22/25 12:52	44,410.4	CVN
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/22/25 11:18	03/22/25 15:08	140,1664B	IYM
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/21/25 18:00	03/21/25 18:15	121,3500CR-B	MRM

Pace

L2516684

03/22/25

Lab Number:

Report Date:

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab ID:	L2516684-03	Date Collected:	03/20/25 22:30
Client ID:	OF6-032025	Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA	Field Prep:	Refer to COC

Sample Depth: Matrix:

Matrix.	valor									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	b								
Solids, Total Suspended	23.	J	mg/l	5.0	NA	1	-	03/21/25 20:47	121,2540D	REM
Cyanide, Total	0.002	J	mg/l	0.005	0.001	1	03/22/25 02:25	03/22/25 14:13	121,4500CN-CE	SRM
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/21/25 18:50	121,4500CN-	MRM
Nitrogen, Nitrate/Nitrite	0.35	J	mg/l	0.10	0.046	1	-	03/22/25 07:06	E(M) 44,353.2	KAF
Chemical Oxygen Demand	34.		mg/l	20	6.0	1	03/22/25 09:20	03/22/25 12:52	44,410.4	CVN
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/22/25 11:18	03/22/25 15:42	140,1664B	IYM
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/21/25 18:00	03/21/25 18:15	121,3500CR-B	MRM

Pace

L2516684

03/22/25

Lab Number:

Report Date:

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab ID:	L2516684-04	Date Collected:	03/20/25 22:50
Client ID:	SF1-032025	Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA	Field Prep:	Refer to COC

Sample Depth: Matrix:

valer									
Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
stborough Lat	b								
17.	J	mg/l	5.0	NA	1	-	03/21/25 20:47	121,2540D	REM
0.003	J	mg/l	0.005	0.001	1	03/22/25 02:25	03/22/25 14:14	121,4500CN-CE	SRM
ND		mg/l	0.010	0.003	1	-	03/21/25 18:50	121,4500CN-	MRM
0.42	J	mg/l	0.10	0.046	1	-	03/22/25 07:07	E(M) 44,353.2	KAF
36.		mg/l	20	6.0	1	03/22/25 09:20	03/22/25 12:53	44,410.4	CVN
ND		mg/l	4.0	4.0	1	03/22/25 11:18	03/22/25 15:43	140,1664B	IYM
ND		mg/l	0.010	0.003	1	03/21/25 18:00	03/21/25 18:15	121,3500CR-B	MRM
	Result 17. 0.003 ND 0.42 36. ND	Result Qualifier attraction J 17. J 0.003 J ND J 0.42 J 36. ND	ResultQualifierUnitsstborough Lab17.Jmg/l17.Jmg/l0.003Jmg/lNDmg/l0.42Jmg/l36.mg/lNDmg/l	Result Qualifier Units RL stborough Lab 17. J mg/l 5.0 17. J mg/l 0.005 0.003 J mg/l 0.005 ND mg/l 0.10 0.42 J mg/l 20 ND mg/l 4.0	Result Qualifier Units RL MDL stborough Lab 17. J mg/l 5.0 NA 17. J mg/l 5.0 0.01 0.003 J mg/l 0.005 0.001 ND mg/l 0.010 0.003 0.42 J mg/l 0.10 0.046 36. mg/l 20 6.0 ND mg/l 4.0 4.0	Result Qualifier Units RL MDL Dilution Factor stborough Lab 17. J mg/l 5.0 NA 1 0.003 J mg/l 0.005 0.001 1 ND mg/l 0.010 0.003 1 0.42 J mg/l 0.10 0.046 1 36. mg/l 20 6.0 1 ND mg/l 4.0 4.0 1	Result Qualifier Units RL MDL Dilution Factor Date Prepared 17. J mg/l 5.0 NA 1 - 0.003 J mg/l 0.005 0.001 1 03/22/25 02:25 ND mg/l 0.010 0.003 1 - 0.42 J mg/l 0.10 0.046 1 - 36. mg/l 20 6.0 1 03/22/25 09:20 ND mg/l 4.0 4.0 1 03/22/25 11:18	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed 17. J mg/l 5.0 NA 1 - 03/21/25 20:47 0.003 J mg/l 0.005 0.001 1 03/22/25 02:25 03/22/25 14:14 ND mg/l 0.010 0.003 1 - 03/21/25 18:50 0.422 J mg/l 0.10 0.046 1 - 03/22/25 07:07 36. mg/l 20 6.0 1 03/22/25 09:20 03/22/25 12:53 ND mg/l 4.0 4.0 1 03/22/25 11:18 03/22/25 15:43	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed Analytical Method stborough Lab - <td< td=""></td<>

Pace

L2516684

03/22/25

Lab Number:

Report Date:

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Sample Depth:

SAMPLE RESULTS

Lab ID:	L2516684-05	Date Collected:	03/20/25 20:50
Client ID:	DUP-02-032025	Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA	Field Prep:	Refer to COC

Matrix: Water Dilution Date Date Analytical Factor MDL Prepared Analyzed Method Parameter Qualifier Units RL Result Analyst General Chemistry - Westborough Lab Solids, Total Suspended 10. J mg/l 5.0 NA 1 03/21/25 20:47 121,2540D REM -Cyanide, Total ND 0.005 0.001 1 03/22/25 14:15 121,4500CN-CE SRM mg/l 03/22/25 02:25 J 1 121,4500CN-Cyanide, Free 0.004 mg/l 0.010 0.003 03/21/25 18:50 MRM -E(M) 44,353.2 J 0.23 mg/l 0.046 KAF Nitrogen, Nitrate/Nitrite 0.10 1 03/22/25 07:08 -Chemical Oxygen Demand 29. mg/l 20 6.0 1 03/22/25 09:20 03/22/25 12:53 44,410.4 CVN 03/22/25 11:18 03/22/25 15:44 Oil & Grease, Hem-Grav ND 4.0 4.0 1 140,1664B IYM mg/l Chromium, Hexavalent ND 0.010 0.003 1 03/21/25 18:00 03/21/25 18:15 121,3500CR-B MRM mg/l

Appendix C

ANALYTICAL REPORT

Lab Number:	L2516324
Client:	TRC Environmental
	1617 JFK Blvd.
	Suite 510
	Philadelphia, PA 19103
ATTN:	Julie Acton
Phone:	(215) 563-2122
Project Name:	SPS TECHNOLOGIES
Project Number:	658978
Report Date:	03/21/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

ace

Serial_No:03212517:35

Project Name:SPS TECHNOLOGIESProject Number:658978

 Lab Number:
 L2516324

 Report Date:
 03/21/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2516324-01	SW1-032025	WATER	JENKINTOWN, PA	03/20/25 11:05	03/20/25
L2516324-02	SW2-032025	WATER	JENKINTOWN, PA	03/20/25 11:40	03/20/25
L2516324-03	SW3-032025	WATER	JENKINTOWN, PA	03/20/25 12:25	03/20/25
L2516324-04	SW4-032025	WATER	JENKINTOWN, PA	03/20/25 10:25	03/20/25
L2516324-05	SW5-032025	WATER	JENKINTOWN, PA	03/20/25 09:35	03/20/25
L2516324-06	DUP-032025	WATER	JENKINTOWN, PA	03/20/25 00:00	03/20/25
L2516324-07	TRIP BLANK-032025	WATER	JENKINTOWN, PA	03/17/25 00:00	03/20/25

Project Name: SPS TECHNOLOGIES Project Number: 658978 Lab Number: L2516324 Report Date: 03/21/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: SPS TECHNOLOGIES Project Number: 658978
 Lab Number:
 L2516324

 Report Date:
 03/21/25

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Cyanide, Total

The WG2043613-4 MS recovery performed on L2516324-05 is outside the acceptance criteria for cyanide, total (89%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

600 Standow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 03/21/25

ORGANICS

VOLATILES

			Serial_No	0:03212517:35
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516324-01 SW1-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 11:05 03/20/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/21/25 11:44 GMT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifie		ptance iteria
Pentafluorobenzene			81		6	60-140
Fluorobenzene			74		6	60-140
4-Bromofluorobenzene			115		6	60-140

			Serial_No	0:03212517:35
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516324-02 SW2-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 11:40 03/20/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/21/25 12:16 GMT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifie		ptance iteria
Pentafluorobenzene			81		6	60-140
Fluorobenzene			72		6	60-140
4-Bromofluorobenzene			116		6	60-140

			Serial_No	0:03212517:35
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516324-03 SW3-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 12:25 03/20/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/21/25 12:48 GMT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			79		6	60-140
Fluorobenzene			72		6	60-140
4-Bromofluorobenzene			117		6	60-140

			Serial_No	0:03212517:35
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516324-04 SW4-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 10:25 03/20/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/21/25 13:20 GMT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifie		ptance iteria
Pentafluorobenzene			77		6	60-140
Fluorobenzene			70		6	60-140
4-Bromofluorobenzene			115		6	60-140

			Serial_No	0:03212517:35
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516324-05 SW5-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 09:35 03/20/25 Refer to COC
Sample Depth:				
Matrix:	Water			
Analytical Method: Analytical Date: Analyst:	128,624.1 03/21/25 13:52 GMT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			77		6	60-140
Fluorobenzene			73		6	60-140
4-Bromofluorobenzene			116		6	60-140

			Serial_No	0:03212517:35
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516324-06 DUP-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 00:00 03/20/25 Refer to COC
Sample Depth:				
Matrix:	Water			
Analytical Method: Analytical Date: Analyst:	128,624.1 03/21/25 14:24 GMT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifie		ptance iteria
Pentafluorobenzene			77		6	60-140
Fluorobenzene			72		6	60-140
4-Bromofluorobenzene			123		6	60-140

			Serial_N	0:03212517:35
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25
		SAMPLE RESULTS		
Lab ID:	L2516324-07		Date Collected:	03/17/25 00:00
Client ID:	TRIP BLANK-032025		Date Received:	03/20/25
Sample Location:	JENKINTOWN, PA		Field Prep:	None
Sample Depth:				
Matrix:	Water			
Analytical Method:	128,624.1			
Analytical Date:	03/21/25 14:56			
Analyst:	GMT			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			76		6	60-140
Fluorobenzene			69		6	60-140
4-Bromofluorobenzene			119		6	60-140

Project Name: SPS TECHNOLOGIES

Project Number: 658978

 Lab Number:
 L2516324

 Report Date:
 03/21/25

Method Blank Analysis Batch Quality Control

Analytical Method:128,624.1Analytical Date:03/21/25 10:01Analyst:GMT

Parameter	Result	Qualifier Unit	ts RL	MDL	
Volatile Organics by GC/MS -	· Westborough Lab	for sample(s):	01-07 Batch:	WG2043604-4	
Toluene	ND	mg	ı/l 0.0010	0.00031	
2-Butanone	ND	mg	ı/l 0.010	0.0010	

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
Pentafluorobenzene	88	60-140			
Fluorobenzene	74	60-140			
4-Bromofluorobenzene	112	60-140			

Pace

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

 Lab Number:
 L2516324

 Report Date:
 03/21/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westbor	rough Lab Associat	ed sample(s)	: 01-07 Batch	: WG204	43604-3				
Toluene	115		-		70-130	-		41	
2-Butanone	72		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	93		60-140
Fluorobenzene	87		60-140
4-Bromofluorobenzene	116		60-140

Matrix Spike Analysis

Project Name:	SPS TECHNOLOGIES	Batch Quality Control	Lab Number:	L2516324
Project Number:	658978		Report Date:	03/21/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Client ID: SW5-032025	Westborou	gh Lab Ass	ociated sam	ple(s): 01-07	QC Batch	ID: WG	32043604-5 V	VG2043604-6 Q	C Samp	ole: L2516324-05
Toluene	ND	0.00002	0.024	120		0.025	125	47-150	4	41
2-Butanone	ND	0.00005	0.030	60		0.031	62	60-140	3	30

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
4-Bromofluorobenzene	116	119	60-140
Fluorobenzene	82	81	60-140
Pentafluorobenzene	85	85	60-140

METALS

Project Name: Project Number:	SPS T 65897	ECHNOLC 8	GIES	SAMPI	SAMPLE RESULTS			Lab Number: Report Date:		L2516324 03/21/25	
Lab ID: Client ID: Sample Location:	L25163 SW1-0 JENKI		PΑ					Date Collected: Date Received: Field Prep:		03/20/25 11:05 03/20/25 Refer to COC	
Sample Depth: Matrix:	Water					Dilution Factor	Date	Date	Prep Method	Analytical Method	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Wethod	Method	Analyst
Total Metals - Mansf	ield Lab										
Chromium, Total	0.00043	J	mg/l	0.00100	0.00017	1	03/21/25 08:14	03/21/25 12:08	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00091	J	mg/l	0.00200	0.00055	1	03/21/25 08:14	03/21/25 12:08	EPA 3005A	3,200.8	NTB
Total Hardness (by c	calculatio	n) - Mansfi	eld Lab								
Hardness	208.2		mg/l	0.5400	NA	1	03/21/25 08:14	03/21/25 12:08	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/21/25 12:08	NA	107,-	
Dissolved Metals - N	lansfield	Lab									
Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	03/21/25 08:14	03/21/25 12:46	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0007	J	mg/l	0.0020	0.0006	1	03/21/25 08:14	03/21/25 12:46	EPA 3005A	3,200.8	NTB

Project Name: Project Number:		SPS TECHNOLOGIES 658978			SAMPLE RESULTS			Lab Number: Report Date:		L2516324 03/21/25	
Lab ID: Client ID: Sample Location:	L2516 SW2-0 JENKI		PA					Date Collected: Date Received: Field Prep:		03/20/25 11:40 03/20/25 Refer to COC	
Sample Depth: Matrix:	Water					Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	
Parameter	Result	Qualifier	Units	RL	MDL	1 actor	Fiepaieu	Analyzeu	Wethou	Method	Analyst
Total Metals - Mansf	field Lab										
Chromium, Total	0.00021	J	mg/l	0.00100	0.00017	1	03/21/25 08:14	103/21/25 12:12	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00154	J	mg/l	0.00200	0.00055	1	03/21/25 08:14	4 03/21/25 12:12	EPA 3005A	3,200.8	NTB
Total Hardness (by o	calculatio	n) - Mansfi	eld Lab								
Hardness	254.8		mg/l	0.5400	NA	1	03/21/25 08:14	4 03/21/25 12:12	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/21/25 12:12	NA	107,-	
Dissolved Metals - M	lansfield	Lab									
Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	03/21/25 08:14	4 03/21/25 12:51	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0016	J	mg/l	0.0020	0.0006	1	03/21/25 08:14	1 03/21/25 12:51	EPA 3005A	3,200.8	NTB

Project Name:	SPS T	ECHNOLO	OGIES				Lab Nu	mber:	L25163	24	
Project Number:	65897	8					Report	Date:	03/21/2	5	
				SAMPL	E RESI	JLTS					
Lab ID:	L2516	324-03					Date Co	ollected:	03/20/25	12:25	
Client ID:	SW3-0)32025					Date Re	eceived:	03/20/25		
Sample Location:	JENKI	NTOWN, F	PA				Field Pr	ep:	Refer to	COC	
Sample Depth:											
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Chromium, Total	0.00028	J	mg/l	0.00100	0.00017	['] 1	03/21/25 08:1	4 03/21/25 14:01	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00100	J	mg/l	0.00200	0.00055	1	03/21/25 08:1	4 03/21/25 14:01	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculatio	n) - Mansfi	ield Lab								
Hardness	241.6		mg/l	0.5400	NA	1	03/21/25 08:1	4 03/21/25 14:01	EPA 3005A	3,200.8	NTB
General Chemistry -	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/21/25 14:01	NA	107,-	
Dissolved Metals - N	Mansfield	Lab									
Chromium, Dissolved	0.0002	J	mg/l	0.0010	0.0002	1	03/21/25 08:1	4 03/21/25 12:55	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0010	J	mg/l	0.0020	0.0006	1	03/21/25 08:1	4 03/21/25 12:55	EPA 3005A	3,200.8	NTB

Project Name: Project Number:	SPS T 65897	ECHNOLC 8	OGIES	SAMPLE RESULTS			Lab Nu Report		L251632 03/21/28		
Lab ID: Client ID: Sample Location:	L25163 SW4-0 JENKII		PA				Date Co Date Re Field Pr	eceived:	03/20/25 03/20/25 Refer to 0		
Sample Depth: Matrix: Parameter	Water	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										,
Chromium, Total	0.00018	J	mg/l	0.00100	0.00017	1	02/21/25 09:1/	4 03/21/25 14:05		3,200.8	NTB
Nickel, Total	0.00180	J	mg/l	0.00200				4 03/21/25 14:05		3,200.8	NTB
Total Hardness (by	calculatio	n) - Mansfi	eld Lab								
Hardness	227.3	,	mg/l	0.5400	NA	1	03/21/25 08:14	4 03/21/25 14:05	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/21/25 14:05	NA	107,-	
Dissolved Metals - N	lansfield	Lab									
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	03/21/25 08:14	4 03/21/25 13:00	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0016	J	mg/l	0.0020	0.0006	1	03/21/25 08:14	4 03/21/25 13:00	EPA 3005A	3,200.8	NTB

								_	_			
Project Name:	SPS T	ECHNOLO	OGIES				Lab Nu	ımber:	L25163	L2516324		
Project Number:	65897	8					Report	Date:	03/21/2	5		
				SAMPL	E RESI	JLTS						
Lab ID:	L2516	324-05					Date C	ollected:	03/20/25	09:35		
Client ID:	SW5-0	32025					Date R	eceived:	03/20/25			
Sample Location:	JENKI	NTOWN, F	PA				Field P	rep:	Refer to	COC		
Sample Depth:												
Matrix:	Water											
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys	
Total Metals - Mansf	ield Lab											
Chromium, Total	0.00020	J	mg/l	0.00100	0.00017	1	03/21/25 08:1	4 03/21/25 11:54	EPA 3005A	3,200.8	NTB	
Nickel, Total	0.00116	J	mg/l	0.00200	0.00055	1	03/21/25 08:1	4 03/21/25 11:54	EPA 3005A	3,200.8	NTB	
Total Hardness (by c	calculatio	n) - Mansfi	eld Lab									
Hardness	184.0		mg/l	0.5400	NA	1	03/21/25 08:1	4 03/21/25 11:54	EPA 3005A	3,200.8	NTB	
General Chemistry -	Mansfiel	d Lab										
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/21/25 11:54	NA	107,-		
Dissolved Metals - M	lansfield	Lab										
Chromium, Dissolved	0.0006	J	mg/l	0.0010	0.0002	1	03/21/25 08:1	4 03/21/25 12:32	EPA 3005A	3,200.8	NTB	
Nickel, Dissolved	0.0013	J	mg/l	0.0020	0.0006	1		4 03/21/25 12:32		3,200.8	NTB	

		CAMDI								
DUP-0	32025	PΑ	SAMPL	E KESU	JLIS	Date Collected: Date Received: Field Prep:		03/20/25 00:00 03/20/25 Refer to COC		
Water					Dilution	Date	Date	Prep	Analvtical	
Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
ield Lab										
0.00150		mg/l	0.00100	0.00017	1	03/21/25 08:14	4 03/21/25 12:26	EPA 3005A	3,200.8	NTB
0.00145	J	mg/l	0.00200	0.00055	1	03/21/25 08:14	4 03/21/25 12:26	EPA 3005A	3,200.8	NTB
alculatior	n) - Mansfi	eld Lab								
238.6	,	mg/l	0.5400	NA	1	03/21/25 08:14	4 03/21/25 12:26	EPA 3005A	3,200.8	NTB
Mansfield	d Lab									
ND		mg/l	0.010	0.003	1		03/21/25 12:26	NA	107,-	
ansfield i	Lab									
0.0002	J	mg/l	0.0010	0.0002	1	03/21/25 08:14	4 03/21/25 13:05	EPA 3005A	3,200.8	NTB
i	658978 L25163 DUP-0 JENKII Water eld Lab 0.00150 0.00145 alculation 238.6 Mansfiele ND	658978 L2516324-06 DUP-032025 JENKINTOWN, F Water eld Lab 0.00150 0.00145 J alculation) - Mansfi 238.6 Mansfield Lab	L2516324-06 DUP-032025 JENKINTOWN, PAWaterUnitsResultQualifierUnitseld Labmg/l0.00150mg/l0.00145Jmg/lalculation) - Mansfield Labmg/l238.6mg/lMansfield Labmg/l	658978 SAMPL L2516324-06 SAMPL DUP-032025 SAMPL Water Vater Result Qualifier Units RL eld Lab mg/l 0.00100 0.00150 mg/l 0.00100 0.00145 J mg/l 0.00200 alculation) - Mansfield Lab 1000000 1000000 Mansfield Lab mg/l 0.54000 Mansfield Lab mg/l 0.0100	658978 SAMPLE RESUMENTS L2516324-06 DUP-032025 JENKINTOWN, PA Water Water MDL eld Lab mg/l 0.00100 0.0017 0.00150 mg/l 0.00100 0.0017 0.00145 J mg/l 0.00200 0.00055 alculation) - Mansfield Lab Img/l 0.5400 NA 238.6 mg/l 0.5400 NA Mansfield Lab mg/l 0.010 0.003	SAMPLE RESULTS L2516324-06 DUP-032025 DUP-032025 SH JENKINTOWN, PA Vater Result Qualifier Units RL MDL Difference eld Lab mg/l 0.00100 0.00017 1 0.00150 mg/l 0.00100 0.00015 1 0.00145 J mg/l 0.0200 0.00055 1 alculationum mg/l 0.5400 NA 1 Mansfiel Lab mg/l 0.010 0.003 1	658978 Report 658978 SAMPLE RESULTS L2516324-06 Date Co DUP-032025 Date Regot JENKINTOWN, PA Field Pr Water MDL Dilution Date Regot eld Lab mg/l 0.00100 0.00017 1 03/21/25 08:14 0.00150 mg/l 0.00200 0.00055 1 03/21/25 08:14 alculation) - Mansfield Lab 238.6 mg/l 0.5400 NA 1 03/21/25 08:14 Mansfield Lab mg/l 0.010 0.003 1 1 1	Report Date: SAMPLE RESULTS L2516324-06 Date Collected: Date Received: Field Prep: Date Collected: Date Received: Field Prep: Water water Result Qualifier Units RL MDL Dilution Date Collected: Date Received: Field Prep: Result Qualifier Units RL MDL Dilution Date Received: Field Prep: eld Lab units RL MDL 1 O3/21/25 08:14 03/21/25 12:26 0.00150 mg/l 0.00100 0.00017 1 03/21/25 08:14 03/21/25 12:26 alculation - Mansfield Lab mg/l 0.5400 NA 1 03/21/25 08:14 03/21/25 12:26 Mansfield Lab mg/l 0.5400 NA 1 03/21/25 08:14 03/21/25 12:26	658978 Report Date: 03/21/2 L2516324-06 DUP-032025 Date Collected: 03/20/25 JENKINTOWN, PA Field Prep: Refer to Water Note that the prepared of the preperse of t	658978 SAMPLE RESULTS Report Date: 03/21/25 L2516324-06 DuP-032025 Date Collected: 03/20/25 JENKINTOWN, PA V Vater Refer to COC Water No Prep Analyzed Prep Analyzed 0.00150 mg/l 0.00100 0.00017 1 03/21/25 08:14 03/21/25 12:26 EPA 3005A 3.200.8 0.00145 J mg/l 0.00200 0.00055 1 03/21/25 08:14 03/21/25 12:26 EPA 3005A 3.200.8 238.6 mg/l 0.5400 NA 1 03/21/25 08:14 03/21/25 12:26 EPA 3005A 3.200.8 Mansfield Lab 3.200.8 atculation) - Mansfield Lab XD mg/l 0.010 NA 1 03/21/25 08:14 03/21/25 12:26 EPA 3005A 3.200.8 Mansfield Lab 3.200.8 Mansfield Lab </td

Project Name: SPS TECHNOLOGIES Project Number: 658978
 Lab Number:
 L2516324

 Report Date:
 03/21/25

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	ld Lab for sa	mple(s):	01-06 E	Batch: WC	G20433	04-1				
Chromium, Total	0.00025	J	mg/l	0.00100	0.00017	′ 1	03/21/25 08:14	03/21/25 11:45	5 3,200.8	NTB
Nickel, Total	ND		mg/l	0.00200	0.00055	5 1	03/21/25 08:14	03/21/25 11:45	5 3,200.8	NTB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness (by cale	culation) - Mansfield	d Lab for sa	mple(s):	01-06	Batch: WC	G2043304-1			
Hardness	ND	mg/l	0.5400	NA	1	03/21/25 08:14	03/21/25 11:45	3,200.8	NTB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result C	Qualifier Ur	nits	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	ansfield Lab f	or sample(s):	01-06	Batch:	WG20)43305-1				
Chromium, Dissolved	ND	n	ng/l	0.0010	0.0002	1	03/21/25 08:14	03/21/25 12:23	3,200.8	NTB
Nickel, Dissolved	ND	n	ng/l	0.0020	0.0006	1	03/21/25 08:14	03/21/25 12:23	3,200.8	NTB

Prep Information

Digestion Method: EPA 3005A

Pace

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number: L2516324 Report Date: 03/21/25

LCS LCSD %Recovery %Recovery Limits Parameter Qual %Recovery RPD **RPD** Limits Qual Qual Total Metals - Mansfield Lab Associated sample(s): 01-06 Batch: WG2043304-2 Chromium, Total 99 -85-115 -Nickel, Total 103 85-115 --Total Hardness (by calculation) - Mansfield Lab Associated sample(s): 01-06 Batch: WG2043304-2 85-115 Hardness 96 --Dissolved Metals - Mansfield Lab Associated sample(s): 01-06 Batch: WG2043305-2 Chromium, Dissolved 96 85-115 --Nickel, Dissolved 99 85-115 --

Matrix Spike Analysis Batch Quality Control

		Batch Quality
Project Name:	SPS TECHNOLOGIES	-

Project Number: 658978

 Lab Number:
 L2516324

 Report Date:
 03/21/25

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Foun	MSD d %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Fotal Metals - Mansfield La	b Associated sam	ple(s): 01-06	G QC Batc	h ID: WG204	3304-3 WG20	43304-4 QC Sar	mple: L2516324-05	Client	ID: SW5-032025
Chromium, Total	0.00020J	0.2	0.1971	98	0.19	06 95	70-130	3	20
Nickel, Total	0.00116J	0.5	0.5201	104	0.50	06 100	70-130	4	20
Total Hardness (by calculat D: SW5-032025 Hardness	184.0	66.2	255.4	108	248		043304-4 QC Sam 70-130	3	516324-05 Clier 20
Dissolved Metals - Mansfiel 032025	ld Lab Associated	sample(s): ()1-06 QC	Batch ID: WG	2043305-3 W	G2043305-4 QC	C Sample: L2516324	I-05 C	lient ID: SW5-
	Id Lab Associated	l sample(s): (0.2	01-06 QC 0.1826	Batch ID: WG	0.19		C Sample: L2516324 70-130	4-05 C	lient ID: SW5- 20

INORGANICS & MISCELLANEOUS

Serial No:03212517:35	Serial	No:03212517:35
-----------------------	--------	----------------

Lab Number: L2516324 **Report Date:** 03/21/25

03/21/25 08:50 03/21/25 09:32 121,3500CR-B

Project Name: SPS TECHNOLOGIES Project Number: 658978

ND

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L2516324-0 SW1-03202 JENKINTOV	5						eceived: C	03/20/25 11:05 03/20/25 Refer to COC	
Sample Depth: Matrix:	Water					Dilution	Data	Defe	A	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 11:40	03/21/25 16:06	121,4500CN-CE	JRO
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/21/25 07:13	,	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/21/25 07:26	03/21/25 11:00	E(M) 140,1664B	TPR

0.003

1

0.010

mg/l

Pace

DMO

E(M)

140,1664B

TPR

DMO

Lab Number: L2516324 Report Date: 03/21/25

03/21/25 07:26 03/21/25 10:58

03/21/25 08:50 03/21/25 09:34 121,3500CR-B

Project Name: SPS TECHNOLOGIES Project Number: 658978

ND

ND

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L2516324-0 SW2-03202 JENKINTOV	5					Date R	Date Collected: 0 Date Received: 0 Field Prep: R		
Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat	C								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 11:40	03/21/25 16:07	121,4500CN-CE	JRO
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/21/25 07:13	121,4500CN-	KAF

4.0

0.003

1

1

4.0

0.010

mg/l

mg/l

Pace)°
<i>–</i> 1 acc	,

Oil & Grease, Hem-Grav

Serial No:03212517:35	Serial	No:03212517:35
-----------------------	--------	----------------

Lab Number: L2516324 Report Date: 03/21/25

03/21/25 07:26 03/21/25 11:01

03/21/25 08:50 03/21/25 09:35 121,3500CR-B

Project Name: SPS TECHNOLOGIES Project Number: 658978

ND

ND

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L2516324-03 SW3-032025 JENKINTOWN, PA							eceived: C	03/20/25 12:25 03/20/25 Refer to COC	
Sample Depth: Matrix:	Water					Dilution	Dette	5 /		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lat	C								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 11:40	03/21/25 16:08	121,4500CN-CE	JRO
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/21/25 07:13	121,4500CN-	KAF

4.0

0.003

1

1

4.0

0.010

mg/l

mg/l

E(M)

TPR

DMO

140,1664B

Oil & Grease, Hem-Grav

Serial No:03212517:35	Serial	No:03212517:35
-----------------------	--------	----------------

Lab Number: L2516324 **Report Date:** 03/21/25

03/21/25 08:50 03/21/25 09:35 121,3500CR-B

Project Name: SPS TECHNOLOGIES Project Number: 658978

ND

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	SW4-03202	L2516324-04 SW4-032025 JENKINTOWN, PA		2025				eceived: C	03/20/25 10:25 03/20/25 Refer to COC	
Sample Depth: Matrix:	Water					Dilution	Data	Defe	A	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 11:40	03/21/25 16:09	121,4500CN-CE	JRO
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/21/25 07:13	,	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/21/25 07:26	03/21/25 11:05	E(M) 140,1664B	TPR

0.003

1

0.010

mg/l

DMO

Serial No:03212517:35	Serial	No:03212517:35
-----------------------	--------	----------------

Lab Number: L2516324 **Report Date:** 03/21/25

03/21/25 08:50 03/21/25 09:30 121,3500CR-B

Project Name: SPS TECHNOLOGIES Project Number: 658978

ND

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	SW5-03202	L2516324-05 SW5-032025 JENKINTOWN, PA					eceived: C	03/20/25 09:35 03/20/25 Refer to COC		
Sample Depth: Matrix:	Water					Dilution	Data	Defe	Americal	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 11:40	03/21/25 16:10	121,4500CN-CE	JRO
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/21/25 07:13	,	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/21/25 07:26	03/21/25 08:43	E(M) 140,1664B	TPR

0.003

1

0.010

mg/l

DMO

Serial_I	No:03212517:35
----------	----------------

Lab Number: L2516324 Report Date: 03/21/25

03/21/25 08:50 03/21/25 09:36 121,3500CR-B

DMO

Project Name: SPS TECHNOLOGIES Project Number: 658978

ND

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	DUP-03202	L2516324-06 DUP-032025 JENKINTOWN, PA						eceived: C	03/20/25 00:00 03/20/25 Refer to COC	
Sample Depth: Matrix:	Water					Dilution	Dette	-		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 11:40	03/21/25 16:16	121,4500CN-CE	JRO
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/21/25 07:13	,	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/21/25 07:26	03/21/25 11:09	E(M) 140,1664B	TPR

0.003

1

0.010

mg/l

Project Name:SPS TECHNOLOGIESProject Number:658978

 Lab Number:
 L2516324

 Report Date:
 03/21/25

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab for sam	ple(s): 01	I-06 Bat	tch: WG	G2043320-	1			
Cyanide, Free	ND	mg/l	0.010	0.003	1	-	03/21/25 07:13	121,4500CN-E(M) KAF
General Chemistry - Wes	tborough Lab for sam	ple(s): 01	I-06 Bat	tch: WG	G2043323-	1			
Chromium, Hexavalent	ND	mg/l	0.010	0.003	1	03/21/25 08:50	03/21/25 09:29	121,3500CR-B	DMO
General Chemistry - Wes	tborough Lab for sam	ple(s): 01	I-06 Bat	tch: WG	G2043347-	1			
Oil & Grease, Hem-Grav	ND	mg/l	4.0	4.0	1	03/21/25 07:26	03/21/25 08:42	140,1664B	TPR
General Chemistry - Wes	tborough Lab for sam	ple(s): 01	I-06 Bat	tch: WG	G2043613-	1			
Cyanide, Total	ND	mg/l	0.005	0.001	1	03/21/25 11:40	03/21/25 16:03	121,4500CN-CE	JRO

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

 Lab Number:
 L2516324

 Report Date:
 03/21/25

LCS LCSD %Recovery Limits Parameter %Recovery Qual %Recovery RPD **RPD** Limits Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01-06 Batch: WG2043320-2 Cyanide, Free 100 -90-110 General Chemistry - Westborough Lab Associated sample(s): 01-06 Batch: WG2043323-2 Chromium, Hexavalent 103 85-115 20 -General Chemistry - Westborough Lab Associated sample(s): 01-06 Batch: WG2043347-2 Oil & Grease, Hem-Grav 96 78-114 18 --General Chemistry - Westborough Lab Associated sample(s): 01-06 Batch: WG2043613-2 Cyanide, Total 93 -90-110

Matrix Spike Analysis Batch Quality Control

SPS TECHNOLOGIES Batch Qu

Project Name: SPS TECHNOLO

Project Number: 658978

 Lab Number:
 L2516324

 Report Date:
 03/21/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD Q	RPD _{ual} Limits
General Chemistry - Westbo SW5-032025	brough Lab Asso	ciated samp	ole(s): 01-06	QC Batch II	D: WG2	043320-4	WG2043320-5	QC S	ample: L251	16324-05	Client ID:
Cyanide, Free	ND	0.25	0.242	97		0.248	99		80-120	2	20
General Chemistry - Westbo SW5-032025	prough Lab Asso	ciated samp	ole(s): 01-06	QC Batch II	D: WG20)43323-4	WG2043323-5	QC S	ample: L251	16324-05	Client ID:
Chromium, Hexavalent	ND	0.1	0.099	99		0.096	96		85-115	3	20
General Chemistry - Westbo SW5-032025	prough Lab Asso	ciated samp	ole(s): 01-06	QC Batch II	D: WG20	043347-4	WG2043347-5	QC S	ample: L251	16324-05	Client ID:
Oil & Grease, Hem-Grav	ND	39.2	38	96		36	92		78-114	4	18
General Chemistry - Westbo SW5-032025	prough Lab Asso	ciated samp	ole(s): 01-06	QC Batch II	D: WG20	043613-4	WG2043613-5	QC S	ample: L251	16324-05	Client ID:
Cyanide, Total	ND	0.2	0.178	89	Q	0.192	96		90-110	8	30

Lab Duplicate Analysis Batch Quality Control

Project Name:SPS TECHNOLOGIESProject Number:658978

 Lab Number:
 L2516324

 Report Date:
 03/21/25

Parameter	Native	e Sample E	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	1-06 QC Batch ID:	WG2043320-3	QC Sample:	L2516324-05	Client ID:	SW5-032025
Cyanide, Free	1	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01	1-06 QC Batch ID:	WG2043323-3	QC Sample:	L2516324-05	Client ID:	SW5-032025
Chromium, Hexavalent	1	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01	1-06 QC Batch ID:	WG2043347-3	QC Sample:	L2516324-05	Client ID:	SW5-032025
Oil & Grease, Hem-Grav	1	ND	ND	mg/l	NC		18
General Chemistry - Westborough Lab	Associated sample(s): 01	1-06 QC Batch ID:	WG2043613-3	QC Sample:	L2516324-05	Client ID:	SW5-032025
Cyanide, Total	1	ND	ND	mg/l	NC		30

Project Name: SPS TECHNOLOGIES Project Number: 658978

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent
В	Absent
С	Absent
D	Absent

Container Information

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2516324-01A	Vial Na2S2O3 preserved	А	NA		3.7	Y	Absent		624.1-PPM(7)
L2516324-01B	Vial Na2S2O3 preserved	А	NA		3.7	Y	Absent		624.1-PPM(7)
L2516324-01C	Vial Na2S2O3 preserved	А	NA		3.7	Y	Absent		624.1-PPM(7)
L2516324-01D	Plastic 250ml HNO3 preserved	А	<2	<2	3.7	Y	Absent		CR-2008S(180),NI-2008S(180)
L2516324-01E	Plastic 250ml HNO3 preserved	А	<2	<2	3.7	Y	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2516324-01F	Plastic 250ml NaOH preserved	А	>12	>12	3.7	Y	Absent		TCN-4500(14)
L2516324-01G	Plastic 500ml unpreserved	А	7	7	3.7	Y	Absent		HEXCR-3500(1),FCN(1)
L2516324-01H	Amber 1L HCI preserved	А	NA		3.7	Y	Absent		OG-1664(28)
L2516324-01J	Amber 1L HCI preserved	А	NA		3.7	Y	Absent		OG-1664(28)
L2516324-02A	Vial Na2S2O3 preserved	А	NA		3.7	Y	Absent		624.1-PPM(7)
L2516324-02B	Vial Na2S2O3 preserved	А	NA		3.7	Y	Absent		624.1-PPM(7)
L2516324-02C	Vial Na2S2O3 preserved	А	NA		3.7	Y	Absent		624.1-PPM(7)
L2516324-02D	Plastic 250ml HNO3 preserved	А	<2	<2	3.7	Y	Absent		CR-2008S(180),NI-2008S(180)
L2516324-02E	Plastic 250ml HNO3 preserved	А	<2	<2	3.7	Y	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2516324-02F	Plastic 250ml NaOH preserved	А	>12	>12	3.7	Y	Absent		TCN-4500(14)
L2516324-02G	Plastic 500ml unpreserved	А	7	7	3.7	Y	Absent		HEXCR-3500(1),FCN(1)
L2516324-02H	Amber 1L HCI preserved	А	NA		3.7	Y	Absent		OG-1664(28)
L2516324-02J	Amber 1L HCI preserved	А	NA		3.7	Y	Absent		OG-1664(28)
L2516324-03A	Vial Na2S2O3 preserved	В	NA		3.6	Y	Absent		624.1-PPM(7)

Project Name:SPS TECHNOLOGIESProject Number:658978

Serial_No:03212517:35 Lab Number: L2516324 Report Date: 03/21/25

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2516324-03B	Vial Na2S2O3 preserved	В	NA		3.6	Y	Absent		624.1-PPM(7)
L2516324-03C	Vial Na2S2O3 preserved	В	NA		3.6	Y	Absent		624.1-PPM(7)
L2516324-03D	Plastic 250ml HNO3 preserved	В	<2	<2	3.6	Y	Absent		CR-2008S(180),NI-2008S(180)
L2516324-03E	Plastic 250ml HNO3 preserved	В	<2	<2	3.6	Y	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2516324-03F	Plastic 250ml NaOH preserved	В	>12	>12	3.6	Υ	Absent		TCN-4500(14)
L2516324-03G	Plastic 500ml unpreserved	В	7	7	3.6	Υ	Absent		HEXCR-3500(1),FCN(1)
L2516324-03H	Amber 1L HCI preserved	В	NA		3.6	Υ	Absent		OG-1664(28)
L2516324-03J	Amber 1L HCI preserved	В	NA		3.6	Υ	Absent		OG-1664(28)
L2516324-04A	Vial Na2S2O3 preserved	В	NA		3.6	Υ	Absent		624.1-PPM(7)
L2516324-04B	Vial Na2S2O3 preserved	В	NA		3.6	Υ	Absent		624.1-PPM(7)
L2516324-04C	Vial Na2S2O3 preserved	В	NA		3.6	Υ	Absent		624.1-PPM(7)
L2516324-04D	Plastic 250ml HNO3 preserved	В	<2	<2	3.6	Υ	Absent		CR-2008S(180),NI-2008S(180)
L2516324-04E	Plastic 250ml HNO3 preserved	В	<2	<2	3.6	Y	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2516324-04F	Plastic 250ml NaOH preserved	В	>12	>12	3.6	Υ	Absent		TCN-4500(14)
L2516324-04G	Plastic 500ml unpreserved	В	7	7	3.6	Υ	Absent		HEXCR-3500(1),FCN(1)
L2516324-04H	Amber 1L HCI preserved	В	NA		3.6	Υ	Absent		OG-1664(28)
L2516324-04J	Amber 1L HCI preserved	В	NA		3.6	Υ	Absent		OG-1664(28)
L2516324-05A	Vial Na2S2O3 preserved	С	NA		3.3	Υ	Absent		624.1-PPM(7)
L2516324-05A1	Vial Na2S2O3 preserved	С	NA		3.3	Υ	Absent		624.1-PPM(7)
L2516324-05A2	Vial Na2S2O3 preserved	С	NA		3.3	Υ	Absent		624.1-PPM(7)
L2516324-05B	Vial Na2S2O3 preserved	С	NA		3.3	Υ	Absent		624.1-PPM(7)
L2516324-05B1	Vial Na2S2O3 preserved	С	NA		3.3	Υ	Absent		624.1-PPM(7)
L2516324-05B2	Vial Na2S2O3 preserved	С	NA		3.3	Υ	Absent		624.1-PPM(7)
L2516324-05C	Vial Na2S2O3 preserved	С	NA		3.3	Υ	Absent		624.1-PPM(7)
L2516324-05C1	Vial Na2S2O3 preserved	С	NA		3.3	Y	Absent		624.1-PPM(7)
L2516324-05C2	Vial Na2S2O3 preserved	С	NA		3.3	Y	Absent		624.1-PPM(7)
L2516324-05D	Plastic 250ml HNO3 preserved	С	<2	<2	3.3	Y	Absent		CR-2008S(180),NI-2008S(180)

Project Name:SPS TECHNOLOGIESProject Number:658978

Container Information			Initial	Final				Frozen		
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2516324-05D1	Plastic 250ml HNO3 preserved	С	<2	<2	3.3	Y	Absent		CR-2008S(180),NI-2008S(180)	
L2516324-05D2	Plastic 250ml HNO3 preserved	С	<2	<2	3.3	Y	Absent		CR-2008S(180),NI-2008S(180)	
L2516324-05E	Plastic 250ml HNO3 preserved	С	<2	<2	3.3	Y	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)	
L2516324-05E1	Plastic 250ml HNO3 preserved	С	<2	<2	3.3	Y	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)	
L2516324-05E2	Plastic 250ml HNO3 preserved	С	<2	<2	3.3	Y	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)	
L2516324-05F	Plastic 250ml NaOH preserved	С	>12	>12	3.3	Y	Absent		TCN-4500(14)	
L2516324-05F1	Plastic 250ml NaOH preserved	С	>12	>12	3.3	Y	Absent		TCN-4500(14)	
L2516324-05F2	Plastic 250ml NaOH preserved	С	>12	>12	3.3	Y	Absent		TCN-4500(14)	
L2516324-05G	Plastic 500ml unpreserved	С	7	7	3.3	Y	Absent		HEXCR-3500(1),FCN(1)	
L2516324-05G1	Plastic 500ml unpreserved	С	7	7	3.3	Y	Absent		HEXCR-3500(1),FCN(1)	
L2516324-05G2	Plastic 500ml unpreserved	С	7	7	3.3	Y	Absent		HEXCR-3500(1),FCN(1)	
L2516324-05H	Amber 1L HCI preserved	С	NA		3.3	Y	Absent		OG-1664(28)	
L2516324-05H1	Amber 1L HCI preserved	С	NA		3.3	Y	Absent		OG-1664(28)	
L2516324-05H2	Amber 1L HCI preserved	С	NA		3.3	Υ	Absent		OG-1664(28)	
L2516324-05J	Amber 1L HCI preserved	С	NA		3.3	Υ	Absent		OG-1664(28)	
L2516324-05J1	Amber 1L HCI preserved	С	NA		3.3	Υ	Absent		OG-1664(28)	
L2516324-05J2	Amber 1L HCI preserved	С	NA		3.3	Υ	Absent		OG-1664(28)	
L2516324-06A	Vial Na2S2O3 preserved	D	NA		4.3	Υ	Absent		624.1-PPM(7)	
L2516324-06B	Vial Na2S2O3 preserved	D	NA		4.3	Υ	Absent		624.1-PPM(7)	
L2516324-06C	Vial Na2S2O3 preserved	D	NA		4.3	Υ	Absent		624.1-PPM(7)	
L2516324-06D	Plastic 250ml HNO3 preserved	D	<2	<2	4.3	Υ	Absent		CR-2008S(180),NI-2008S(180)	
L2516324-06E	Plastic 250ml HNO3 preserved	D	<2	<2	4.3	Y	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)	
L2516324-06F	Plastic 250ml NaOH preserved	D	>12	>12	4.3	Y	Absent		TCN-4500(14)	
L2516324-06G	Plastic 500ml unpreserved	D	7	7	4.3	Y	Absent		HEXCR-3500(1),FCN(1)	
L2516324-06H	Amber 1L HCI preserved	D	NA		4.3	Y	Absent		OG-1664(28)	
L2516324-06J	Amber 1L HCI preserved	D	NA		4.3	Y	Absent		OG-1664(28)	
L2516324-07A	Vial Na2S2O3 preserved	А	NA		3.7	Y	Absent		624.1-PPM(7)	

Project Name:SPS TECHNOLOGIESProject Number:658978

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler		pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2516324-07B	Vial Na2S2O3 preserved	А	NA		3.7	Y	Absent		624.1-PPM(7)

Pace

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number: L2516324

Report Date: 03/21/25

GLOSSARY

Acronyms

Acronyms	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number: L2516324

Report Date: 03/21/25

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number: L2516324

Report Date: 03/21/25

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

 Lab Number:
 L2516324

 Report Date:
 03/21/25

REFERENCES

- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 107 Calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- 140 Method 1664, Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. MADEP-APH. Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048 EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048 Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

Certification IDs:

Westborough Facility – 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANÅB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility – 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

Serial_No:03212517:35

Westborough, MA Mansfield, MA		CUSTO Project Inform						nform	ation	⊠ E	MAIL	/erab		Billi	PHA J Ing In Same a	forma	ation	С — РА — Е РО #: 228588	
TEL: 508-898-9220	Mansfield, MA TEL: 500-822-9300	Project Name:	SPS Technol	logies		-	_	rv Ri	quire	9.969.16	0.040.0	10.00			-				
FAX: 508-898-9193 Client Informati	FAX: 508-822-3268	Project Location	n: lenkintour	DA		State	/Fed P	1.5 M 1.5 M 1.6 M		meme	ennen	JOIL L	IIIII	Criter	ria				
	nmental Corporation	Project #: 6589		1, PA		PA					-								-
	n F. Kennedy Blvd.	Project Manage				-										and the second			125
Suite 510, Philadel	an a	ALPHA Quote #		0			_							_		_			
Phone: 267-679-67		Contraction of the local division of the loc	and the second s		-	AN	ALYS	IS										1	TO
Fax: 215-563-2339																	SAMPLE HANDLING	TA	
	x: 215-563-2339 Standard Rush (ONLY IF PRE-APPROVED Tail: JActon@trccompanies.com								PCH									🖾 Done	L
201	been Previously analyzed by Alpha	Due Date:	Time	1-Day			E(M)	빙	1350		80							Not Needed Lab to do	в
				1-Day		- 00	CN-	CCN-	2 SA	8	200		80					Preservation	0 T
Other Project Specific Requirements/Comments/Detection Limits: "Attorney-Client Privileged & Confidential" All VOAs in 1 Cooler ER Project D 15561 Ved Metalsfieldfiltered					se E1664	SM4500CN-E(M)	e SM4500CN-CE	Chroi	ium E200	romium E	5200.8	ckel E200		17	ss E200.8		(Please specify below)	TLES	
En Project	v ssowednietaist i eid til terel					1 W	1.45	<u>w</u>	E	5	-	¥	-	12	e e				
En Project	1 22 0 1 6 0	incrais rife	104110	and a		Grea	anid	anic	Hpe	hro	P	ckel	p	24	Ш	p			
ALPHA Lab ID	Sample ID	Coll	ection	Sample	Sampler's	il and Grease E1664B	ee Cyanide	otal Cyanide	peciated H	oTal Chro	ssolved C	otal Nickel	ssolved h	EK E624.	oluene E6	otal Hard		Sample Boscific	
ALPHA Lab ID (Lab Use Only)	Sample ID	Coll	ection Time	1000 A 100 A	Initials	ō	Free	Total	Chrome Speciated Hex Stheme SM3500-CrB	. S	Dissolved Chromium E200.8	Total Nickel E200.8	Dissolved Nickel E200.8	MEK E624.1	Toluene E624.1	Total Hardness		Sample Specific Comments	
ALPHA Lab ID (Lab Use Only) 0324-01	Sample ID SW1 - 032,025	Coll Date 3/2.0/25	Time	Sample	Initials JS	⊡	Eree	X Total										Sample Specific Comments	0
ALPHA Lab ID (Lab Use Only) 02	Sample ID SW1 - 032025 SW2 - 032025	Coll Date 3/2.el/25 3/2.el/35	Time	Sample Matrix	Initials JS JS	IIO IIO	N N Free	X X Total										Sample Specific Comments	9
ALPHA Lab ID (Lab Use Only) 02 02 03	Sample ID SW1 - 032025 SW2 - 032025 SW3 - 032025	Coll Date 3/2.0/25 3/2.0/3 3/2.0/25	Time 1105 1140 1225	Sample Matrix SW	Initials JS JS JS		X X Free	X X Total										Sample Specific Comments	9
ALPHA Lab ID (Lab Use Only) 02 03 04	Sample ID SW1 - 032025 SW2 - 032025 SW3 - 032025 SW4 - 032025	Coll Date 3/2.R/25 3/2.0/3 3/2.0/25 3/2.0/25	Time 1105 1140 1225 1025	Sample Matrix SW SW	Initiats JS JS JS JS		X X X Free	X X X X Total										Comments	9 0 0 0
ALPHA Lab ID (Lab Use Only) 02 03 04 05	Sample ID SW1 - Ø32025 SW2 - Ø32025 SW3 - Ø32025 SW4 - Ø32025 SW5 - Ø32025	Coll Date 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25	Time 1105 1140 1225 1025 (0935	Sample Matrix SW SW SW	Initiats JS JS JS JS JS			XXXXX Total	XXXXXX									Comments	0 0 1/2
ALPHA Lab ID (Lab Use Only) 02 03 04 05 00	Sample ID SW1 - 032025 SW2 - 032025 SW3 - 032025 SW4 - 032025 SW5 - 032025 DUP - 032025	Coll Date 3/2.R/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25	Time 1105 1140 1225 1025	Sample Matrix SW SW SW SW	Initiats JS JS JS JS JS JS JS		X X X Free	X X X X Total										Bample Bpecific Comments Porform MS MSD	9 0 0 0
ALPHA Lab ID (Lab Use Only) 02 03 04 05	Sample ID SW1 - Ø32025 SW2 - Ø32025 SW3 - Ø32025 SW4 - Ø32025 SW5 - Ø32025	Coll Date 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25	Time 1105 1140 1225 1025 (0935	Sample Matrix SW SW SW SW	Initiats JS JS JS JS JS			XXXXX Total	XXXXXX									Comments	0 0 1/2
ALPHA Lab ID (Lab Use Only) 02 03 04 05 00	Sample ID SW1 - 032025 SW2 - 032025 SW3 - 032025 SW4 - 032025 SW5 - 032025 DUP - 032025	Coll Date 3/2.R/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25	Time 1105 1140 1225 1025 (0935	Sample Matrix SW SW SW SW SW	Initiats JS JS JS JS JS JS JS			XXXXX Total	XXXXXX									Comments	0 0 1/2 9
ALPHA Lab ID (Lab Use Only) 02 03 04 05 00	Sample ID SW1 - 032025 SW2 - 032025 SW3 - 032025 SW4 - 032025 SW5 - 032025 DUP - 032025	Coll Date 3/2.R/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25	Time 1105 1140 1225 1025 (0935	Sample Matrix SW SW SW SW SW	Initiats JS JS JS JS JS JS JS			XXXXX Total	XXXXXX									Comments	0 0 1/2 1/2
ALPHA Lab ID (Lab Use Only) 02 03 04 05 00	Sample ID SW1 - 032025 SW2 - 032025 SW3 - 032025 SW4 - 032025 SW5 - 032025 DUP - 032025	Coll Date 3/2.R/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25	Time 1105 1140 1225 1025 (0935	Sample Matrix SW SW SW SW SW	Initiats JS JS JS JS JS JS JS			XXXXX Total	XXXXXX									Comments	0 0 1/2 1/2
ALPHA Lab ID (Lab Use Only) 02 03 04 05 00	Sample ID SW1 - 032025 SW2 - 032025 SW3 - 032025 SW4 - 032025 SW5 - 032025 DUP - 032025	Coll Date 3/2.R/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25	Time 1105 1140 1225 1025 (0935	Sample Matrix SW SW SW SW SW W	Initiats JS JS JS JS JS JS JS			XXXXX Total	XXXXXX									Comments	0 0 1/2 1/2
ALPHA Lab ID (Lab Use Only) 02 03 04 05 00	Sample ID SW1 - 032025 SW2 - 032025 SW3 - 032025 SW4 - 032025 SW5 - 032025 DUP - 032025	Coll Date 3/2.R/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25	Time 1105 1140 1225 1025 (0935	Sample Matrix SW SW SW SW SW W W	Initiats JS JS JS JS JS JS JS JS JS													Parfarm Millinsb	0 0 9 12 1 1
ALPHA Lab ID (Lab Use Only) 02 03 04 05 00	Sample ID SW1 - 032025 SW2 - 032025 SW3 - 032025 SW4 - 032025 SW5 - 032025 DUP - 032025	Coll Date 3/2.R/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25	Ection Time 1105 1140 1225 1025 0935 0000	Sample Matrix SW SW SW SW SW W W	Initials JS JS JS JS JS JS JS JS JS													Perform ms ms b Perform ms ms b Please print clearly, leg and competely. Sampi not be logged in and turnaround time clock w	9 9 9 9 12 7 12 7
ALPHA Lab ID (Lab Use Only) 02 03 04 05 00	Sample ID SW1 - 032025 SW2 - 032025 SW3 - 032025 SW4 - 032025 SW5 - 032025 DUP - 032025	Coli Date 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25	Ection Time 1105 1140 1225 1025 0935 0000	Sample Matrix SW SW SW SW SW W U SW Co Quished By:	Initials JS JS JS JS JS JS JS JS JS													Please print clearly, log and completely. Sampl not be logged in and turnaround time clock w Mant until any ambiguite Presolved. All samples	9 9 9 9 1/2 7 1/2 7 1/2 7
ALPHA Lab ID (Lab Use Only) 02 03 04 05 00	Sample ID SW1 - 032025 SW2 - 032025 SW3 - 032025 SW4 - 032025 SW5 - 032025 DUP - 032025	Coli Date 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25 3/2.0/25	rime 1105 1140 1225 1025 0935 0000 	Sample Matrix SW SW SW SW SW SW W W	Initials JS JS JS JS JS JS JS JS JS JS Preservative													Please print clearly, legi and competely. Samp not be logged in and tumaround time clock w tart until any ambiguite	9 9 9 9 1/2 7 1/2 7 1/2 7 1/2 7

ANALYTICAL REPORT

Lab Number:	L2516684
Client:	TRC Environmental
	1617 JFK Blvd.
	Suite 510
	Philadelphia, PA 19103
ATTN:	Julie Acton
Phone:	(215) 563-2122
Project Name:	SPS TECHNOLOGIES
Project Number:	658978
Report Date:	03/22/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:SPS TECHNOLOGIESProject Number:658978

 Lab Number:
 L2516684

 Report Date:
 03/22/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2516684-01	OF2-032025	WATER	JENKINTOWN, PA	03/20/25 20:40	03/21/25
L2516684-02	OF9-032025	WATER	JENKINTOWN, PA	03/20/25 21:50	03/21/25
L2516684-03	OF6-032025	WATER	JENKINTOWN, PA	03/20/25 22:30	03/21/25
L2516684-04	SF1-032025	WATER	JENKINTOWN, PA	03/20/25 22:50	03/21/25
L2516684-05	DUP-02-032025	WATER	JENKINTOWN, PA	03/20/25 20:50	03/21/25
L2516684-06	TRIP BLANK-02-032025	WATER	JENKINTOWN, PA	03/20/25 00:00	03/21/25

Project Name: SPS TECHNOLOGIES Project Number: 658978 Lab Number: L2516684 Report Date: 03/22/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:SPS TECHNOLOGIESProject Number:658978

 Lab Number:
 L2516684

 Report Date:
 03/22/25

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Sturgis Melissa Sturgis

Authorized Signature:

Title: Technical Director/Representative

Date: 03/22/25

, ace

ORGANICS

VOLATILES

			Serial_No:03222519:23			
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684		
Project Number:	658978		Report Date:	03/22/25		
		SAMPLE RESULTS				
Lab ID: Client ID: Sample Location:	L2516684-01 OF2-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 20:40 03/21/25 Refer to COC		
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/22/25 11:49 JKH					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	0.0012	J	mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			89		6	60-140
Fluorobenzene			71		6	60-140
4-Bromofluorobenzene			92		e	60-140

			Serial_No:03222519:23			
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684		
Project Number:	658978		Report Date:	03/22/25		
		SAMPLE RESULTS				
Lab ID: Client ID: Sample Location:	L2516684-02 OF9-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 21:50 03/21/25 Refer to COC		
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/22/25 11:15 JKH					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			89		6	60-140
Fluorobenzene			69		6	60-140
4-Bromofluorobenzene			93		6	60-140

			Serial_No:03222519:23			
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684		
Project Number:	658978		Report Date:	03/22/25		
		SAMPLE RESULTS				
Lab ID: Client ID: Sample Location:	L2516684-03 OF6-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 22:30 03/21/25 Refer to COC		
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/22/25 10:40 JKH					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			88		6	60-140
Fluorobenzene			70		6	60-140
4-Bromofluorobenzene			92		6	60-140

			Serial_No	o:03222519:23
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516684-04 SF1-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 22:50 03/21/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/22/25 10:06 JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			86		6	60-140
Fluorobenzene			71		6	60-140
4-Bromofluorobenzene			93		e	60-140

			Serial_No	0:03222519:23
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2516684-05 DUP-02-032025 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/20/25 20:50 03/21/25 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/22/25 09:32 JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	0.0011	J	mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifie		ptance iteria
Pentafluorobenzene			91		6	60-140
Fluorobenzene			71		6	60-140
4-Bromofluorobenzene			95		e	60-140

Pace

			Serial_N	o:03222519:23
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID:	L2516684-06		Date Collected:	03/20/25 00:00
Client ID:	TRIP BLANK-02-032025		Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA		Field Prep:	None
Sample Depth:				
Matrix:	Water			
Analytical Method:	128,624.1			
Analytical Date:	03/22/25 08:58			
Analyst:	JKH			
· · · · · · · · · · · · · · · · · · ·	••••			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			90		6	60-140
Fluorobenzene			71		6	60-140
4-Bromofluorobenzene			94		6	60-140

Pace

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number: L2516684 Report Date: 03/22/25

Method Blank Analysis Batch Quality Control

Analytical Method:128,624.1Analytical Date:03/22/25 08:14Analyst:JKH

Parameter	Result	Qualifier Unit	s RL	MDL	
Volatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	01-06 Batch:	WG2043861-4	
Toluene	ND	mg,	íl 0.0010	0.00031	
2-Butanone	ND	mg,	íl 0.010	0.0010	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
Pentafluorobenzene	96	60-140
Fluorobenzene	70	60-140
4-Bromofluorobenzene	87	60-140

Pace

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

 Lab Number:
 L2516684

 Report Date:
 03/22/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westbor	ough Lab Associat	ed sample(s)	: 01-06 Batch	n: WG204	43861-3				
Toluene	90		-		70-130	-		41	
2-Butanone	76		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	105		60-140
Fluorobenzene	82		60-140
4-Bromofluorobenzene	84		60-140

Matrix Spike Analysis

Project Name:	SPS TECHNOLOGIES	Batch Quality Control	Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	-	RPD .imits
Volatile Organics by GC/MS - Client ID: OF9-032025	Westborou	gh Lab Ass	sociated sam	ple(s): 01-06	QC Batch	ID: WG	62043861-5 V	VG2043861-6 Q0	C Sam	ple: L2516	684-02
Toluene	ND	0.00002	0.020	100		0.021	105	47-150	5		41
2-Butanone	ND	0.00005	0.041	80		0.042	82	60-140	2		30

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
4-Bromofluorobenzene	88	85	60-140
Fluorobenzene	78	80	60-140
Pentafluorobenzene	101	102	60-140

METALS

Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID:	L2516684-01		Date Collected:	03/20/25 20:40
Client ID:	OF2-032025		Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.4982		mg/l	0.01000	0.00327	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC
Chromium, Total	0.00104		mg/l	0.00100	0.00017	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC
Copper, Total	0.01680		mg/l	0.00100	0.00038	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC
Iron, Total	0.2110		mg/l	0.05000	0.01910	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC
Lead, Total	0.00434		mg/l	0.00100	0.00034	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00241		mg/l	0.00200	0.00055	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC
Zinc, Total	0.1552		mg/l	0.00500	0.00341	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC
Total Hardness (by calculation) - Mansfield Lab											
Hardness	11.84		mg/l	0.5400	NA	1	03/22/25 08:06	03/22/25 12:15	EPA 3005A	3,200.8	MRC

General Chemistry - Mansfield Lab										
Chromium, Trivalent	ND	mg/l	0.010	0.003	1	03/22/25 12:15	NA	107,-		
Dissolved Metals - Mansfield Lab										

Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	03/22/25 08:06 03/22/25 13:37 EPA 3005A	3,200.8	MRC
Nickel, Dissolved	0.0018	J	mg/l	0.0020	0.0006	1	03/22/25 08:06 03/22/25 13:37 EPA 3005A	3,200.8	MRC

Pace

Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID:	L2516684-02		Date Collected:	03/20/25 21:50
Client ID:	OF9-032025		Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Aluminum, Total	1.014		mg/l	0.01000	0.00327	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC
Chromium, Total	0.01433		mg/l	0.00100	0.00017	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC
Copper, Total	0.01731		mg/l	0.00100	0.00038	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC
Iron, Total	1.764		mg/l	0.05000	0.01910	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC
Lead, Total	0.01992		mg/l	0.00100	0.00034	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00459		mg/l	0.00200	0.00055	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC
Zinc, Total	0.1313		mg/l	0.00500	0.00341	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC
Total Hardness (by calculation) - Mansfield Lab											
Hardness	36.92		mg/l	0.5400	NA	1	03/22/25 08:06	03/22/25 12:01	EPA 3005A	3,200.8	MRC

General Chemistry - Mansfield Lab										
Chromium, Trivalent	0.014	mg/l	0.010	0.003	1	03/22/25 12:01	NA	107,-		
Dissolved Metals - Mansfield Lab										

Chromium, Dissolved	0.0025		mg/l	0.0010	0.0002	1	03/22/25 08:06 03/22/25 13:23 EPA 3005A	3,200.8	MRC
Nickel, Dissolved	0.0008	J	mg/l	0.0020	0.0006	1	03/22/25 08:06 03/22/25 13:23 EPA 3005A	3,200.8	MRC

Pace

Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID:	L2516684-03		Date Collected:	03/20/25 22:30
Client ID:	OF6-032025		Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Aluminum, Total	0.4509		mg/l	0.01000	0.00327	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC
Chromium, Total	0.00157		mg/l	0.00100	0.00017	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC
Copper, Total	0.00652		mg/l	0.00100	0.00038	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC
Iron, Total	0.6166		mg/l	0.05000	0.01910	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC
Lead, Total	0.00404		mg/l	0.00100	0.00034	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00099	J	mg/l	0.00200	0.00055	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC
Zinc, Total	0.02347		mg/l	0.00500	0.00341	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC
Total Hardness (b	Total Hardness (by calculation) - Mansfield Lab										
Hardness	20.44		mg/l	0.5400	NA	1	03/22/25 08:06	03/22/25 12:19	EPA 3005A	3,200.8	MRC

General Chemistry	- Mansfield Lab							
Chromium, Trivalent	ND	mg/l	0.010	0.003	1	03/22/25 12:19	NA	107,-
Dissolved Metals - N	Mansfield Lab							

Chromium, Dissolved	0.0006	J	mg/l	0.0010	0.0002	1	03/22/25 08:06 03/22/25 13:41 EPA 3005A	3,200.8	MRC
Nickel, Dissolved	ND		mg/l	0.0020	0.0006	1	03/22/25 08:06 03/22/25 13:41 EPA 3005A	3,200.8	MRC

Pace

Project Name:	SPS TECHNOLOGIES		Lab Number:	L2516684
Project Number:	658978		Report Date:	03/22/25
		SAMPLE RESULTS		
Lab ID:	L2516684-04		Date Collected:	03/20/25 22:50
Client ID:	SF1-032025		Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
Total Metals - Mans	field Lab											
Aluminum, Total	0.1802		mg/l	0.01000	0.00327	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC	
Chromium, Total	0.00158		mg/l	0.00100	0.00017	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC	
Copper, Total	0.00596		mg/l	0.00100	0.00038	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC	
Iron, Total	0.4688		mg/l	0.05000	0.01910	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC	
Lead, Total	0.00393		mg/l	0.00100	0.00034	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC	
Nickel, Total	0.00192	J	mg/l	0.00200	0.00055	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC	
Zinc, Total	0.03394		mg/l	0.00500	0.00341	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC	
Total Hardness (by	Fotal Hardness (by calculation) - Mansfield Lab											
Hardness	173.0		mg/l	0.5400	NA	1	03/22/25 08:06	03/22/25 12:24	EPA 3005A	3,200.8	MRC	

General Chemistry - Mansfield Lab										
Chromium, Trivalent	ND	mg/l	0.010	0.003	1	03/22/25 12:24	NA	107,-		
Dissolved Metals - N	Mansfield Lab									

Chromium, Dissolved	0.0010		mg/l	0.0010	0.0002	1	03/22/25 08:06 03/22/25 13:46 EPA 3005A	3,200.8	MRC
Nickel, Dissolved	0.0014	J	mg/l	0.0020	0.0006	1	03/22/25 08:06 03/22/25 13:46 EPA 3005A	3,200.8	MRC

Pace

Project Name:	SPS TECHNOLOGIES	Lab Number:	L2516684
Project Number:	658978	Report Date:	03/22/25
	SAMPLE RESULTS		
Lab ID:	L2516684-05	Date Collected:	03/20/25 20:50
Client ID:	DUP-02-032025	Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA	Field Prep:	Refer to COC

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Aluminum, Total	0.4096		mg/l	0.01000	0.00327	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC
Chromium, Total	0.00081	J	mg/l	0.00100	0.00017	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC
Copper, Total	0.01312		mg/l	0.00100	0.00038	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC
Iron, Total	0.1612		mg/l	0.05000	0.01910	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC
Lead, Total	0.00368		mg/l	0.00100	0.00034	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00197	J	mg/l	0.00200	0.00055	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC
Zinc, Total	0.1197		mg/l	0.00500	0.00341	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC
Total Hardness (b	by calculatio	n) - Mansfi	eld Lab								
Hardness	9.467		mg/l	0.5400	NA	1	03/22/25 08:06	03/22/25 12:48	EPA 3005A	3,200.8	MRC

General Chemistry	- Mansfield Lab								
Chromium, Trivalent	ND	mg/l	0.010	0.003	1	03/22/25 12:48	NA	107,-	
Dissolved Metals -	Mansfield Lab								

Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	03/22/25 08:06 03/22/25 13:50 EPA 3005A	3,200.8	MRC
Nickel, Dissolved	0.0017	J	mg/l	0.0020	0.0006	1	03/22/25 08:06 03/22/25 13:50 EPA 3005A	3,200.8	MRC

Pace

Project Name: SPS TECHNOLOGIES Project Number: 658978
 Lab Number:
 L2516684

 Report Date:
 03/22/25

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01-05 E	Batch: WO	G20437	64-1				
Aluminum, Total	ND	mg/l	0.01000	0.00327	· 1	03/22/25 08:06	03/22/25 11:48	3,200.8	MRC
Chromium, Total	ND	mg/l	0.00100	0.00017	' 1	03/22/25 08:06	03/22/25 11:48	3,200.8	MRC
Copper, Total	ND	mg/l	0.00100	0.00038	3 1	03/22/25 08:06	03/22/25 11:48	3,200.8	MRC
Iron, Total	ND	mg/l	0.05000	0.01910) 1	03/22/25 08:06	03/22/25 11:48	3,200.8	MRC
Lead, Total	ND	mg/l	0.00100	0.00034	1	03/22/25 08:06	03/22/25 11:48	3,200.8	MRC
Nickel, Total	ND	mg/l	0.00200	0.00055	5 1	03/22/25 08:06	03/22/25 11:48	3,200.8	MRC
Zinc, Total	ND	mg/l	0.00500	0.00341	1	03/22/25 08:06	03/22/25 11:48	3,200.8	MRC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness (by	calculation) - Mansfield L	ab for sa	ample(s):	01-05	Batch: W	G2043764-1			
Hardness	ND	mg/l	0.5400	NA	1	03/22/25 08:06	03/22/25 11:48	3,200.8	MRC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qu	alifier Units	s RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Dissolved Metals - Ma	ansfield Lab for	r sample(s): 0'	I-05 Batch	n: WG2	043765-1				
Chromium, Dissolved	ND	mg/l	0.0010	0.0002	1	03/22/25 08:06	03/22/25 11:52	3,200.8	MRC
Nickel, Dissolved	ND	mg/l	0.0020	0.0006	5 1	03/22/25 08:06	03/22/25 11:52	2 3,200.8	MRC

Prep Information

Digestion Method: EPA 3005A

Pace

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number: L2516684

Report Date: 03/22/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sam	ole(s): 01-05	Batch: WG2	2043764-2					
Aluminum, Total	99		-		85-115	-		
Chromium, Total	102		-		85-115	-		
Copper, Total	108		-		85-115	-		
Iron, Total	107		-		85-115	-		
Lead, Total	100		-		85-115	-		
Nickel, Total	106		-		85-115	-		
Zinc, Total	105		-		85-115	-		
Total Hardness (by calculation) - Mansfield La	b Associated	sample(s): 0	1-05 Batch: V	VG204376	4-2			
Hardness	101		-		85-115	-		
Dissolved Metals - Mansfield Lab Associated	sample(s): 01	-05 Batch:	WG2043765-2					
Chromium, Dissolved	104		-		85-115	-		
Nickel, Dissolved	110		-		85-115	-		

Matrix Spike Analysis

Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number: L2516684 Report Date: 03/22/25

MS RPD MS Native MS MSD MSD Recovery Sample %Recovery Qual Found Limits Added Found Limits %Recovery Qual **RPD** Qual Parameter Total Metals - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG2043764-3 WG2043764-4 QC Sample: L2516684-02 Client ID: OF9-032025 2 3.048 3.068 Aluminum. Total 1.014 102 103 70-130 1 20 0.01433 0.2 0.2159 0.2125 2 Chromium. Total 101 99 70-130 20 0.01731 0.25 0.2830 0.2842 Copper, Total 106 107 70-130 0 20 Iron, Total 1.764 2.609 2.660 1 84 90 70-130 2 20 Lead. Total 0.01992 0.53 0.5603 102 0.5761 105 70-130 3 20 Nickel, Total 0.00459 0.5 0.5391 0.5366 107 106 70-130 0 20 Zinc, Total 0.1313 0.5 0.6518 0.6620 2 20 106 70-130 104 Total Hardness (by calculation) - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG2043764-3 WG2043764-4 QC Sample: L2516684-02 Client ID: OF9-032025 Hardness 36.92 66.2 102.6 99 102.1 98 70-130 0 20 Dissolved Metals - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG2043765-3 WG2043765-4 QC Sample: L2516684-02 Client ID: OF9-032025 Chromium. Dissolved 0.0025 0.2 0.2041 101 0.2090 103 70-130 2 20 2 Nickel. Dissolved 0.0008J 0.5297 0.5 106 0.5410 108 70-130 20

INORGANICS & MISCELLANEOUS

L2516684

03/22/25

Lab Number:

Report Date:

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab ID:	L2516684-01	Date Collected:	03/20/25 20:40
Client ID:	OF2-032025	Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA	Field Prep:	Refer to COC

Sample Depth: Matrix:

Parameter	Valor	Dilution Date Date Ar	Analytical							
	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - We	stborough Lal	b								
Solids, Total Suspended	18.		mg/l	5.0	NA	1	-	03/21/25 20:47	121,2540D	REM
Cyanide, Total	0.002	J	mg/l	0.005	0.001	1	03/22/25 02:25	03/22/25 14:08	121,4500CN-CE	SRM
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/21/25 18:50	121,4500CN- E(M)	MRM
Nitrogen, Nitrate/Nitrite	0.37		mg/l	0.10	0.046	1	-	03/22/25 06:58	44,353.2	KAF
Chemical Oxygen Demand	45.		mg/l	20	6.0	1	03/22/25 09:20	03/22/25 12:52	44,410.4	CVN
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/22/25 11:18	03/22/25 15:06	140,1664B	IYM
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/21/25 18:00	03/21/25 18:15	121,3500CR-B	MRM

Pace

L2516684

03/22/25

Lab Number:

Report Date:

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab ID:	L2516684-02	Date Collected:	03/20/25 21:50
Client ID:	OF9-032025	Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA	Field Prep:	Refer to COC

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lat	C								
Solids, Total Suspended	32.		mg/l	10	NA	2	-	03/21/25 20:47	121,2540D	REM
Cyanide, Total	0.003	J	mg/l	0.005	0.001	1	03/22/25 02:25	03/22/25 14:09	121,4500CN-CE	SRM
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/21/25 18:50	121,4500CN-	MRM
Nitrogen, Nitrate/Nitrite	0.20		mg/l	0.10	0.046	1	-	03/22/25 06:59	E(M) 44,353.2	KAF
Chemical Oxygen Demand	52.		mg/l	20	6.0	1	03/22/25 09:20	03/22/25 12:52	44,410.4	CVN
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/22/25 11:18	03/22/25 15:08	140,1664B	IYM
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/21/25 18:00	03/21/25 18:15	121,3500CR-B	MRM

Pace

L2516684

03/22/25

Lab Number:

Report Date:

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab ID:	L2516684-03	Date Collected:	03/20/25 22:30
Client ID:	OF6-032025	Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA	Field Prep:	Refer to COC

Sample Depth: Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lat	C								
Solids, Total Suspended	23.		mg/l	5.0	NA	1	-	03/21/25 20:47	121,2540D	REM
Cyanide, Total	0.002	J	mg/l	0.005	0.001	1	03/22/25 02:25	03/22/25 14:13	121,4500CN-CE	SRM
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/21/25 18:50	121,4500CN- E(M)	MRM
Nitrogen, Nitrate/Nitrite	0.35		mg/l	0.10	0.046	1	-	03/22/25 07:06	44,353.2	KAF
Chemical Oxygen Demand	34.		mg/l	20	6.0	1	03/22/25 09:20	03/22/25 12:52	44,410.4	CVN
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/22/25 11:18	03/22/25 15:42	140,1664B	IYM
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/21/25 18:00	03/21/25 18:15	121,3500CR-B	MRM

Pace

L2516684

03/22/25

Lab Number:

Report Date:

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab ID:	L2516684-04	Date Collected:	03/20/25 22:50
Client ID:	SF1-032025	Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA	Field Prep:	Refer to COC

Sample Depth: Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
	neoun	Quanter					•	-		Analys
General Chemistry - Wes	stborough Lat	C								
Solids, Total Suspended	17.		mg/l	5.0	NA	1	-	03/21/25 20:47	121,2540D	REM
Cyanide, Total	0.003	J	mg/l	0.005	0.001	1	03/22/25 02:25	03/22/25 14:14	121,4500CN-CE	SRM
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/21/25 18:50	121,4500CN- E(M)	MRM
Nitrogen, Nitrate/Nitrite	0.42		mg/l	0.10	0.046	1	-	03/22/25 07:07	44,353.2	KAF
Chemical Oxygen Demand	36.		mg/l	20	6.0	1	03/22/25 09:20	03/22/25 12:53	44,410.4	CVN
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/22/25 11:18	03/22/25 15:43	140,1664B	IYM
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/21/25 18:00	03/21/25 18:15	121,3500CR-B	MRM

Pace

L2516684

03/22/25

Lab Number:

Report Date:

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab ID:	L2516684-05	Date Collected:	03/20/25 20:50
Client ID:	DUP-02-032025	Date Received:	03/21/25
Sample Location:	JENKINTOWN, PA	Field Prep:	Refer to COC

Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lat	C								
Solids, Total Suspended	10.		mg/l	5.0	NA	1	-	03/21/25 20:47	121,2540D	REM
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/22/25 02:25	03/22/25 14:15	121,4500CN-CE	SRM
Cyanide, Free	0.004	J	mg/l	0.010	0.003	1	-	03/21/25 18:50	121,4500CN- E(M)	MRM
Nitrogen, Nitrate/Nitrite	0.23		mg/l	0.10	0.046	1	-	03/22/25 07:08	44,353.2	KAF
Chemical Oxygen Demand	29.		mg/l	20	6.0	1	03/22/25 09:20	03/22/25 12:53	44,410.4	CVN
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/22/25 11:18	03/22/25 15:44	140,1664B	IYM
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/21/25 18:00	03/21/25 18:15	121,3500CR-B	MRM

Pace

 Lab Number:
 L2516684

 Report Date:
 03/22/25

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	R	L	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	oorough Lab	for sam	ple(s): 0	1-05	Bat	ch: WG	2043658-	1			
Chromium, Hexavalent	ND		mg/l	0.0	010	0.003	1	03/21/25 18:00	03/21/25 18:15	121,3500CR-B	MRM
General Chemistry - Westl	oorough Lab	for sam	ple(s): 0	1-05	Bat	ch: WG	2043659-	1			
Cyanide, Free	ND		mg/l	0.0	010	0.003	1	-	03/21/25 18:50	121,4500CN-E(M	I) MRM
General Chemistry - Westl	oorough Lab	for sam	ple(s): 0	1-05	Bat	ch: WG	2043692-	1			
Solids, Total Suspended	ND		mg/l	5	.0	NA	1	-	03/21/25 20:47	121,2540D	REM
General Chemistry - West	oorough Lab	for sam	ple(s): 0	1-05	Bat	ch: WG	2043722-	1			
Cyanide, Total	ND		mg/l	0.0	005	0.001	1	03/22/25 02:25	03/22/25 13:53	121,4500CN-CE	SRM
General Chemistry - West	oorough Lab	for sam	ple(s): 0	1-05	Bat	ch: WG	2043731-	1			
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.	10	0.046	1	-	03/22/25 05:34	44,353.2	KAF
General Chemistry - Westl	oorough Lab	for sam	ple(s): 0	1-05	Bat	ch: WG	2043780-	1			
Chemical Oxygen Demand	ND		mg/l	2	20	6.0	1	03/22/25 09:20	03/22/25 12:50	44,410.4	CVN
General Chemistry - West	oorough Lab	for sam	ple(s): 0	1-05	Bat	ch: WG	2043825-	1			
Oil & Grease, Hem-Grav	ND		mg/l	4	.0	4.0	1	03/22/25 11:18	03/22/25 14:32	140,1664B	IYM

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number: L2516684 Report Date: 03/22/25

LCS LCSD %Recovery %Recoverv %Recovery Limits **RPD Limits** Qual RPD Parameter Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01-05 Batch: WG2043658-2 Chromium, Hexavalent 105 -85-115 20 General Chemistry - Westborough Lab Associated sample(s): 01-05 Batch: WG2043659-2 Cyanide, Free 101 90-110 -General Chemistry - Westborough Lab Associated sample(s): 01-05 Batch: WG2043692-2 Solids, Total Suspended 80-120 81 -General Chemistry - Westborough Lab Associated sample(s): 01-05 Batch: WG2043722-2 Cyanide, Total 96 90-110 General Chemistry - Westborough Lab Associated sample(s): 01-05 Batch: WG2043731-2 Nitrogen, Nitrate/Nitrite 100 90-110 General Chemistry - Westborough Lab Associated sample(s): 01-05 Batch: WG2043780-2 Chemical Oxygen Demand 103 90-110 --General Chemistry - Westborough Lab Associated sample(s): 01-05 Batch: WG2043825-2 Oil & Grease, Hem-Grav 87 -78-114 18

Matrix Spike Analysis

Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number: L2516684 Report Date: 03/22/25

Native MS MS MS MSD RPD MSD Recovery Qual Found Sample Added Found %Recovery Limits Limits **RPD** Qual %Recoverv Qual Parameter QC Batch ID: WG2043658-4 WG2043658-5 QC Sample: L2516684-02 General Chemistry - Westborough Lab Associated sample(s): 01-05 Client ID: OF9-032025 Chromium. Hexavalent ND 0.1 0.104 104 0.105 105 85-115 20 1 General Chemistry - Westborough Lab Associated sample(s): 01-05 QC Batch ID: WG2043659-4 WG2043659-5 QC Sample: L2516684-02 Client ID: OF9-032025 Cyanide, Free ND 0.25 0.237 0.233 95 93 80-120 2 20 General Chemistry - Westborough Lab Associated sample(s): 01-05 QC Batch ID: WG2043722-3 WG2043722-4 QC Sample: L2516684-02 Client ID: OF9-032025 0.2 Cyanide, Total 0.003J 0.188 94 0.187 94 90-110 1 30 General Chemistry - Westborough Lab Associated sample(s): 01-05 QC Batch ID: WG2043731-4 QC Sample: L2516684-02 Client ID: OF9-032025 Nitrogen, Nitrate/Nitrite 0.20 4 4.3 102 80-120 20 -General Chemistry - Westborough Lab Associated sample(s): 01-05 QC Batch ID: WG2043780-3 QC Sample: L2516684-02 Client ID: OF9-032025 Chemical Oxygen Demand 52. 238 300 104 90-110 20 QC Batch ID: WG2043825-4 WG2043825-5 QC Sample: L2516684-02 General Chemistry - Westborough Lab Associated sample(s): 01-05 Client ID: OF9-032025 ND Oil & Grease. Hem-Grav 38.8 38 35 9 18 98 90 78-114 General Chemistry - Westborough Lab Associated sample(s): 01-05 QC Batch ID: WG2043825-6 WG2043825-7 QC Sample: L2516850-05 Client ID: MS Sample ND Oil & Grease. Hem-Grav 39.2 34 32 83 78-114 5 18 87

Lab Duplicate Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES Project Number: 658978

Lab Number: Report Date:

L2516684 03/22/25

Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
I sample(s): 01-05 QC Batch	ID: WG2043658-3	QC Sample:	L2516684-02	Client ID:	OF9-032025
ND	ND	mg/l	NC		20
sample(s): 01-05 QC Batch	ID: WG2043659-3	QC Sample:	L2516684-02	Client ID:	OF9-032025
ND	0.004J	mg/l	NC		20
sample(s): 01-05 QC Batch	ID: WG2043692-3	QC Sample:	L2516684-02	Client ID:	OF9-032025
32.	37	mg/l	14		32
sample(s): 01-05 QC Batch	ID: WG2043722-5	QC Sample:	L2516684-02	Client ID:	OF9-032025
0.003J	ND	mg/l	NC		30
sample(s): 01-05 QC Batch	ID: WG2043731-3	QC Sample:	L2516684-02	Client ID:	OF9-032025
0.20	0.19	mg/l	5		20
sample(s): 01-05 QC Batch	ID: WG2043780-4	QC Sample:	L2516684-02	Client ID:	OF9-032025
52.	47	mg/l	10		20
sample(s): 01-05 QC Batch	ID: WG2043825-3	QC Sample:	L2516684-02	Client ID:	OF9-032025
ND	ND	mg/l	NC		18
1	I sample(s): 01-05 QC Batch ND I sample(s): 01-05 QC Batch ND I sample(s): 01-05 QC Batch 32. I sample(s): 01-05 QC Batch 0.003J I sample(s): 01-05 QC Batch 0.20 I sample(s): 01-05 QC Batch 52.	I sample(s): 01-05 QC Batch ID: WG2043658-3 ND ND I sample(s): 01-05 QC Batch ID: WG2043659-3 ND 0.004J I sample(s): 01-05 QC Batch ID: WG2043692-3 32. 37 I sample(s): 01-05 QC Batch ID: WG2043722-5 0.003J ND I sample(s): 01-05 QC Batch ID: WG2043722-5 0.003J ND I sample(s): 01-05 QC Batch ID: WG2043731-3 0.20 0.19 I sample(s): 01-05 QC Batch ID: WG2043780-4 52. 47 I sample(s): 01-05 QC Batch ID: WG2043825-3	Isample(s): 01-05 QC Batch ID: WG2043658-3 QC Sample: ND ND mg/l Isample(s): 01-05 QC Batch ID: WG2043659-3 QC Sample: ND 0.004J mg/l Isample(s): 01-05 QC Batch ID: WG2043692-3 QC Sample: ND 0.004J mg/l mg/l Isample(s): 01-05 QC Batch ID: WG2043692-3 QC Sample: 32. 37 mg/l Isample(s): 01-05 QC Batch ID: WG2043722-5 QC Sample: 0.003J ND mg/l mg/l Isample(s): 01-05 QC Batch ID: WG2043731-3 QC Sample: 0.20 0.19 mg/l mg/l Isample(s): 01-05 QC Batch ID: WG2043780-4 QC Sample: 0.20 0.19 mg/l mg/l mg/l Isample(s): 01-05 QC Batch ID: WG2043780-4 QC Sample: 52. 47 mg/l <t< td=""><td>I sample(s): 01-05 QC Batch ID: WG2043658-3 QC Sample: L2516684-02 ND ND mg/l NC I sample(s): 01-05 QC Batch ID: WG2043659-3 QC Sample: L2516684-02 ND 0.004J mg/l NC I sample(s): 01-05 QC Batch ID: WG2043692-3 QC Sample: L2516684-02 32. 37 mg/l 14 I sample(s): 01-05 QC Batch ID: WG2043722-5 QC Sample: L2516684-02 0.003J ND mg/l 14 I sample(s): 01-05 QC Batch ID: WG2043722-5 QC Sample: L2516684-02 0.003J ND mg/l NC NC I sample(s): 01-05 QC Batch ID: WG2043731-3 QC Sample: L2516684-02 0.20 0.19 mg/l 5 I sample(s): 01-05 QC Batch ID: WG2043780-4 QC Sample: L2516684-02 52. 47 mg/l 10 1</td><td>I sample(s): 01-05 QC Batch ID: WG2043658-3 QC Sample: L2516684-02 Client ID: ND ND mg/l NC I sample(s): 01-05 QC Batch ID: WG2043659-3 QC Sample: L2516684-02 Client ID: ND 0.004J mg/l NC I sample(s): 01-05 QC Batch ID: WG2043692-3 QC Sample: L2516684-02 Client ID: 32. 37 mg/l 14 I sample(s): 01-05 QC Batch ID: WG2043722-5 QC Sample: L2516684-02 Client ID: 0.003J ND mg/l 14 I sample(s): 01-05 QC Batch ID: WG2043722-5 QC Sample: L2516684-02 Client ID: 0.003J ND mg/l NC NC NC I sample(s): 01-05 QC Batch ID: WG2043731-3 QC Sample: L2516684-02 Client ID: 0.20 0.19 mg/l 5 10 10 10 I sample(s): 01-05 QC Batch ID: WG2043780-4 QC Sample: L2516684-02 Client ID: 52. 47 mg/l<</td></t<>	I sample(s): 01-05 QC Batch ID: WG2043658-3 QC Sample: L2516684-02 ND ND mg/l NC I sample(s): 01-05 QC Batch ID: WG2043659-3 QC Sample: L2516684-02 ND 0.004J mg/l NC I sample(s): 01-05 QC Batch ID: WG2043692-3 QC Sample: L2516684-02 32. 37 mg/l 14 I sample(s): 01-05 QC Batch ID: WG2043722-5 QC Sample: L2516684-02 0.003J ND mg/l 14 I sample(s): 01-05 QC Batch ID: WG2043722-5 QC Sample: L2516684-02 0.003J ND mg/l NC NC I sample(s): 01-05 QC Batch ID: WG2043731-3 QC Sample: L2516684-02 0.20 0.19 mg/l 5 I sample(s): 01-05 QC Batch ID: WG2043780-4 QC Sample: L2516684-02 52. 47 mg/l 10 1	I sample(s): 01-05 QC Batch ID: WG2043658-3 QC Sample: L2516684-02 Client ID: ND ND mg/l NC I sample(s): 01-05 QC Batch ID: WG2043659-3 QC Sample: L2516684-02 Client ID: ND 0.004J mg/l NC I sample(s): 01-05 QC Batch ID: WG2043692-3 QC Sample: L2516684-02 Client ID: 32. 37 mg/l 14 I sample(s): 01-05 QC Batch ID: WG2043722-5 QC Sample: L2516684-02 Client ID: 0.003J ND mg/l 14 I sample(s): 01-05 QC Batch ID: WG2043722-5 QC Sample: L2516684-02 Client ID: 0.003J ND mg/l NC NC NC I sample(s): 01-05 QC Batch ID: WG2043731-3 QC Sample: L2516684-02 Client ID: 0.20 0.19 mg/l 5 10 10 10 I sample(s): 01-05 QC Batch ID: WG2043780-4 QC Sample: L2516684-02 Client ID: 52. 47 mg/l<

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent
В	Absent
С	Absent
D	Absent
E	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2516684-01A	Vial Na2S2O3 preserved	Е	NA		4.4	Y	Absent		624.1-PPM(7)
L2516684-01B	Vial Na2S2O3 preserved	E	NA		4.4	Y	Absent		624.1-PPM(7)
L2516684-01C	Vial Na2S2O3 preserved	E	NA		4.4	Y	Absent		624.1-PPM(7)
L2516684-01D	Plastic 250ml HNO3 preserved	А	<2	<2	2.0	Y	Absent		CR-2008S(180),NI-2008S(180)
L2516684-01E	Plastic 250ml HNO3 preserved	A	<2	<2	2.0	Y	Absent		AL-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDT-2008(180),CU- 2008T(180),FE-2008T(180),CR- 2008T(180),PB-2008T(180)
L2516684-01F	Plastic 250ml H2SO4 preserved	А	<2	<2	2.0	Y	Absent		NO3/NO2-353(28),COD-410(28)
L2516684-01G	Plastic 250ml NaOH preserved	А	>12	>12	2.0	Y	Absent		TCN-4500(14)
L2516684-01H	Plastic 950ml unpreserved	А	7	7	2.0	Y	Absent		HEXCR-3500(1),FCN(1)
L2516684-01I	Plastic 950ml unpreserved	А	7	7	2.0	Y	Absent		TSS-2540(7)
L2516684-01J	Amber 1L HCI preserved	А	NA		2.0	Y	Absent		OG-1664(28)
L2516684-01K	Amber 1L HCI preserved	А	NA		2.0	Y	Absent		OG-1664(28)
L2516684-02A	Vial Na2S2O3 preserved	Е	NA		4.4	Y	Absent		624.1-PPM(7)
L2516684-02A1	Vial Na2S2O3 preserved	Е	NA		4.4	Y	Absent		624.1-PPM(7)
L2516684-02A2	Vial Na2S2O3 preserved	Е	NA		4.4	Y	Absent		624.1-PPM(7)
L2516684-02B	Vial Na2S2O3 preserved	Е	NA		4.4	Y	Absent		624.1-PPM(7)
L2516684-02B1	Vial Na2S2O3 preserved	Е	NA		4.4	Y	Absent		624.1-PPM(7)
L2516684-02B2	Vial Na2S2O3 preserved	E	NA		4.4	Y	Absent		624.1-PPM(7)

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2516684-02C	Vial Na2S2O3 preserved	Е	NA		4.4	Y	Absent		624.1-PPM(7)
L2516684-02C1	Vial Na2S2O3 preserved	Е	NA		4.4	Y	Absent		624.1-PPM(7)
L2516684-02C2	Vial Na2S2O3 preserved	Е	NA		4.4	Y	Absent		624.1-PPM(7)
L2516684-02D	Plastic 250ml HNO3 preserved	С	<2	<2	2.1	Y	Absent		CR-2008S(180),NI-2008S(180)
L2516684-02D1	Plastic 250ml HNO3 preserved	D	<2	<2	2.3	Y	Absent		CR-2008S(180),NI-2008S(180)
L2516684-02D2	Plastic 250ml HNO3 preserved	D	<2	<2	2.3	Y	Absent		CR-2008S(180),NI-2008S(180)
L2516684-02E	Plastic 250ml HNO3 preserved	С	<2	<2	2.1	Y	Absent		AL-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDT-2008(180),CU- 2008T(180),FE-2008T(180),CR- 2008T(180),PB-2008T(180)
L2516684-02E1	Plastic 250ml HNO3 preserved	D	<2	<2	2.3	Y	Absent		AL-2008T(180),NI-2008T(180),HARDT- 2008(180),CU-2008T(180),FE- 2008T(180),CR-2008T(180),PB-2008T(180)
L2516684-02E2	Plastic 250ml HNO3 preserved	D	<2	<2	2.3	Y	Absent		AL-2008T(180),NI-2008T(180),HARDT- 2008(180),CU-2008T(180),FE- 2008T(180),CR-2008T(180),PB-2008T(180)
L2516684-02F	Plastic 250ml H2SO4 preserved	С	<2	<2	2.1	Y	Absent		NO3/NO2-353(28),COD-410(28)
L2516684-02F1	Plastic 250ml H2SO4 preserved	D	<2	<2	2.3	Y	Absent		NO3/NO2-353(28),COD-410(28)
L2516684-02F2	Plastic 250ml H2SO4 preserved	D	<2	<2	2.3	Y	Absent		NO3/NO2-353(28),COD-410(28)
L2516684-02G	Plastic 250ml NaOH preserved	С	>12	>12	2.1	Y	Absent		TCN-4500(14)
L2516684-02G1	Plastic 250ml NaOH preserved	D	>12	>12	2.3	Y	Absent		TCN-4500(14)
L2516684-02G2	Plastic 250ml NaOH preserved	D	>12	>12	2.3	Y	Absent		TCN-4500(14)
L2516684-02H	Plastic 950ml unpreserved	С	7	7	2.1	Y	Absent		HEXCR-3500(1),FCN(1)
L2516684-02H1	Plastic 950ml unpreserved	D	7	7	2.3	Y	Absent		HEXCR-3500(1),FCN(1)
L2516684-02H2	Plastic 950ml unpreserved	D	7	7	2.3	Y	Absent		HEXCR-3500(1),FCN(1)
L2516684-02I	Plastic 950ml unpreserved	С	7	7	2.1	Y	Absent		TSS-2540(7)
L2516684-02I1	Plastic 950ml unpreserved	D	7	7	2.3	Y	Absent		TSS-2540(7)
L2516684-0212	Plastic 950ml unpreserved	D	7	7	2.3	Y	Absent		TSS-2540(7)
L2516684-02J	Amber 1L HCI preserved	С	NA		2.1	Y	Absent		OG-1664(28)
L2516684-02J1	Amber 1L HCI preserved	D	NA		2.3	Y	Absent		OG-1664(28)
L2516684-02J2	Amber 1L HCI preserved	D	NA		2.3	Y	Absent		OG-1664(28)
L2516684-02K	Amber 1L HCI preserved	С	NA		2.1	Y	Absent		OG-1664(28)

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2516684-02K1	Amber 1L HCI preserved	D	NA		2.3	Y	Absent		OG-1664(28)
L2516684-02K2	Amber 1L HCI preserved	D	NA		2.3	Y	Absent		OG-1664(28)
L2516684-03A	Vial Na2S2O3 preserved	E	NA		4.4	Y	Absent		624.1-PPM(7)
L2516684-03B	Vial Na2S2O3 preserved	E	NA		4.4	Y	Absent		624.1-PPM(7)
L2516684-03C	Vial Na2S2O3 preserved	E	NA		4.4	Y	Absent		624.1-PPM(7)
L2516684-03D	Plastic 250ml HNO3 preserved	С	<2	<2	2.1	Y	Absent		CR-2008S(180),NI-2008S(180)
L2516684-03E	Plastic 250ml HNO3 preserved	С	<2	<2	2.1	Y	Absent		AL-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),HARDT- 2008(180),FE-2008T(180),CR- 2008T(180),PB-2008T(180)
L2516684-03F	Plastic 250ml H2SO4 preserved	С	<2	<2	2.1	Y	Absent		NO3/NO2-353(28),COD-410(28)
L2516684-03G	Plastic 250ml NaOH preserved	С	>12	>12	2.1	Y	Absent		TCN-4500(14)
L2516684-03H	Plastic 950ml unpreserved	С	7	7	2.1	Υ	Absent		HEXCR-3500(1),FCN(1)
L2516684-03I	Plastic 950ml unpreserved	С	7	7	2.1	Υ	Absent		TSS-2540(7)
L2516684-03J	Amber 1L HCI preserved	С	NA		2.1	Υ	Absent		OG-1664(28)
L2516684-03K	Amber 1L HCI preserved	С	NA		2.1	Υ	Absent		OG-1664(28)
L2516684-04A	Vial Na2S2O3 preserved	Е	NA		4.4	Υ	Absent		624.1-PPM(7)
L2516684-04B	Vial Na2S2O3 preserved	Е	NA		4.4	Υ	Absent		624.1-PPM(7)
L2516684-04C	Vial Na2S2O3 preserved	Е	NA		4.4	Υ	Absent		624.1-PPM(7)
L2516684-04D	Plastic 250ml HNO3 preserved	В	<2	<2	5.3	Υ	Absent		CR-2008S(180),NI-2008S(180)
L2516684-04E	Plastic 250ml HNO3 preserved	В	<2	<2	5.3	Y	Absent		AL-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDT-2008(180),CU- 2008T(180),FE-2008T(180),CR- 2008T(180),PB-2008T(180)
L2516684-04F	Plastic 250ml H2SO4 preserved	В	<2	<2	5.3	Υ	Absent		NO3/NO2-353(28),COD-410(28)
L2516684-04G	Plastic 250ml NaOH preserved	В	>12	>12	5.3	Υ	Absent		TCN-4500(14)
L2516684-04H	Plastic 950ml unpreserved	В	7	7	5.3	Υ	Absent		HEXCR-3500(1),FCN(1)
L2516684-04I	Plastic 950ml unpreserved	В	7	7	5.3	Y	Absent		TSS-2540(7)
L2516684-04J	Amber 1L HCI preserved	В	NA		5.3	Y	Absent		OG-1664(28)
L2516684-04K	Amber 1L HCI preserved	В	NA		5.3	Y	Absent		OG-1664(28)
L2516684-05A	Vial Na2S2O3 preserved	Е	NA		4.4	Y	Absent		624.1-PPM(7)

Serial_No:03222519:23 *Lab Number:* L2516684 *Report Date:* 03/22/25

Container Information					Final	Temp			Frozen	
	Container ID	Container Type	Cooler	pН	рН		Pres	Seal	Date/Time	Analysis(*)
	L2516684-05B	Vial Na2S2O3 preserved	E	NA		4.4	Y	Absent		624.1-PPM(7)
	L2516684-05C	Vial Na2S2O3 preserved	Е	NA		4.4	Y	Absent		624.1-PPM(7)
	L2516684-05D	Plastic 250ml HNO3 preserved	А	<2	<2	2.0	Y	Absent		CR-2008S(180),NI-2008S(180)
	L2516684-05E	Plastic 250ml HNO3 preserved	A	<2	<2	2.0	Y	Absent		AL-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDT-2008(180),CU- 2008T(180),FE-2008T(180),PB- 2008T(180),CR-2008T(180)
	L2516684-05F	Plastic 250ml H2SO4 preserved	А	<2	<2	2.0	Y	Absent		NO3/NO2-353(28),COD-410(28)
	L2516684-05G	Plastic 250ml NaOH preserved	А	>12	>12	2.0	Y	Absent		TCN-4500(14)
	L2516684-05H	Plastic 950ml unpreserved	А	7	7	2.0	Y	Absent		HEXCR-3500(1),FCN(1)
	L2516684-05I	Plastic 950ml unpreserved	А	7	7	2.0	Y	Absent		TSS-2540(7)
	L2516684-05J	Amber 1L HCI preserved	А	NA		2.0	Y	Absent		OG-1664(28)
	L2516684-05K	Amber 1L HCI preserved	А	NA		2.0	Y	Absent		OG-1664(28)
	L2516684-06A	Vial Na2S2O3 preserved	Е	NA		4.4	Y	Absent		624.1-PPM(7)
	L2516684-06B	Vial Na2S2O3 preserved	Е	NA		4.4	Y	Absent		624.1-PPM(7)

Pace

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number: L2516684

Report Date: 03/22/25

GLOSSARY

Acronyms

DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	 No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number: L2516684 Report Date: 03/22/25

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, (flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number: L2516684

Report Date: 03/22/25

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

 Lab Number:
 L2516684

 Report Date:
 03/22/25

REFERENCES

- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- 140 Method 1664, Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. MADEP-APH. Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048 EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048 Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

Certification IDs:

Westborough Facility – 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANÁB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility – 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

1	CHAIN OF C	USTO	DY	PAGE 1 OF	1	Date	Rec'd is	n Lab:	3	2/21	25		2	ALP	HA J	ob #:	L	2516684		
ALPHA	-	Project Information			Report Information Data Deliverables								Billing Information							
ANALTTIOA		Project mormation			🗆 FAX 🖾 EMAIL							Same as Client info PO #: 228588								
Westborough, MA	Mansfield, MA	Project Name: SPS Technologies				ADEx Add'I Deliverables														
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288						Regulatory Requirements/Report Limits													
Client Informati		Project Location: Jenkintown, PA				State/Fed Program PA									Criteria					
Client: TRC Enviro	nmental Corporation F	Project #: 658978																		
Address: 1617 Joh	in F. Kennedy Blvd. F	Project Manager: Julie Acton						_												
Suite 510, Philade	Iphia, PA 19103 A	ALPHA Quote #:							_					_	_	_	_		1	
Phone: 267-679-6	728	urn-Around	Time			ANA	ALYSI	S	-				-			-	-	SAMPLE HANDLING	O T	
Fax: 215-563-233] Standard	🛛 Rus	h (only if pr	E-APPROVED)				CrB		0.8						0	Filtration Done	A L	
Email: JActon@tro	companies.com						Ŵ	ш	Speciated Hex Crhome SM3500-CrB	80	E20	0.8	E410.4		353.2	0.8	SM 2540	Not Needed	1: # .	
These samples have	a been Previously analyzed by Alpha	ue Date:	Time:	I-Day			N-E	N-C	SM3	E200	Kel	r, Nickel E200.8 Cu E200.8	d E4					Lab to do Preservation	BO	
Other Project Sp	ecific Requirements/Comments/D	etection Limit	s:			8	00Cl	00CI	e	Nickel E200.8			nan	-				Lab to do	T T	
	rivileged & Confidential*	a da ante de la companya de la compa				Grease E1664B	M45	Total Cyanide SM4500CN-CE	PH I	Total Chromium, Nic	Chromium,	, Pb, Zn,	Chemical Oxygn Dernand	Toluene E624.1	Nitrate-Nitrite as N E353.2	less E200.8	lved Solids	(Please specify below)	L III O	
All VOAs in 1 Coo ER Project					ase	le SI	lex 0													
Dissolved Metals -	Field Filtered					Gre	Free Cyanide SM4500CN-E(M)	yani	ted +	hron	o pa	AI, Fe,	0 Tes	olue	Nitri	Total Hardness	Dissolved			
ALPHA Lab ID	Sample ID	Colle	ection	Sample	Sampler's	and	O e	tal O	eciat	tal O	Dissolved	Total A	emic	MEK, T	rate-	tal H	Total D	Result Barriella		
(Lab Use Only)		Date	Time	Matrix	Initials	ō	Free	P	Sp		Di	19	5	ME	ž	10	10	Sample Specific Comments		
16684-01	0F00200 0FZ-032025	3/20/25	2040	sw	VS		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\square		11	
-12	0F004 0F9-032025	3/00/05	2150	SW	35	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		Perform MS/hSD	33	
03	0F000 0f6-032025	3/20/05	2230	SW	JS	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes		11	
-24	05000 SF1-032025	3/20/25	2250	SW	25	\boxtimes		\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes				11	
-05	DUP-02-032025	3/20/25	2050	SW	JS			\boxtimes		\boxtimes		\boxtimes	\boxtimes		\boxtimes				11	
-06	TRIP BLANK- 62 - 032025	3/16/25	-	W	-			Ц	Ш	Ц					Ц				2	
	SF (S)			SW																
	-er-65	_		SW						X									-	
						H	님	H	H	H	븜	4	H	H	4	님	H		-	
				_				-	-	_	_			-						
				C	ontainer Type	A	P	P	P	P	P	P	P	V	P	P	P	Please print clearly, legit	bly	
		Preservative							A C A C -				H				and completely. Sample not be logged in and	es can		
				quished By:	_		ste/Tim	7.	-	_	Receiv	24	ř.			ate/Tir		furnaround time clock wi start until any ambiguitie		
		James Songes TRC GPRALE				3/21	5 0	840		DIS	ib	IT C	C	2-91-25 84				resolved. All samples tubmitted are subject to		
FORM NO: 01-01(I-NJ) (mr. 5-349-12)		Propheter 3.			2(.)	1.25 14:30					h		21-	1/2	51	Alpha's Payment Terms				
			p-x	0.0.04	- 6.8	1.1.1.1	Lav	1 -	E	de	2-		-	-10	1100	0 1	Acres	-		