

SPS TECHNOLOGIES - ABINGTON PA DAILY SURFACE WATER AND OUTFALL SAMPLING RESULTS REPORT FOR MARCH 19, 2025

PREPARED FOR:

SPS TECHNOLOGIES

PREPARED BY:

TRC Environmental Corporation, Inc 1617 JFK Boulevard, Suite 510 Philadelphia, PA 19103

TABLE OF CONTENTS

		Page No.
1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	2
2.1	Background	2
3.0	OFF-SITE SURFACE WATER INVESTIGATION	3
3.1	SURFACE WATER SAMPLING METHODOLOGY	
3.2	SURFACE WATER SAMPLING	
3.3	Surface Water Sampling Results	3
4.0	DATA QUALITY ASSURANCE/QUALITY CONTROL MANAGEMENT	5
4.1	FIELD QUALITY ASSURANCE/QUALITY CONTROL REQUIREMENTS.	
4.2	ANALYTICAL QA/QC SAMPLES	5
4.3	Data Evaluation	5
4.4	References	5

Figures

Figure 1: On-Site Investigation Surface Water and Outfall Sampling Locations

Figure 2: Off-Site Investigation Surface Water Locations

Table

Table 1: Surface Water Analytical Results

Appendices

i

Appendix A: Surface Water Field Information Form

Appendix B: Data Validation Report

Appendix C: Laboratory Analytical Report

1.0 EXECUTIVE SUMMARY

TRC Environmental Corporation, on behalf of SPS Technologies Abington PA (SPS), collected five surface water samples accordance with WSP USA Inc. Surface Water and Outfall Sampling Plan revised on March 5, 2025 (Sampling Plan). The samples were collected on March 19, 2025 and submitted to a Pennsylvania-certified analytical laboratory for analysis. The sample locations are shown in the attached **Figures 1** and **2** and the results of the analysis are shown below. Please note, outfalls were not sampled during this sampling event because there was no precipitation.

Surface Water		Upstream Offsite SW Sample Location 1	Upstream Offsite SW Sample Location 2	SW Sample Location 3	SW Sample Location 3 (Duplicate)	High School Road Sample Location 4	Downstream SW Sample Location 5
Parameter	Units	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds							
Toluene	mg/L	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	mg/L	ND	ND	ND	ND	ND	ND
General Chemistry							
Chromium, Trivalent	mg/L	ND	ND	ND	ND	ND	ND
Chromium, Hexavalent	mg/L	0.007 J	ND	0.006 J	0.003 J	0.005 J	0.008 J
Total Cyanide	mg/L	ND	ND	ND	ND	ND	ND
Free Cyanide	mg/L	ND	ND	0.004 J	0.004 J	0.004 J	0.004 J
Oil & Grease	mg/L	ND	ND	ND	ND	ND	ND
Total Metals							
Total Chromium	mg/L	0.00029 J	0.00031 J	0.00029 J	0.00027 J	0.00019 J	0.00870
Total Nickel	mg/L	0.00206	0.00087 J	0.00100 J	0.00100 J	0.00168 J	0.00151 J
Dissolved Meta	als						
Dissolved Chromium	mg/L	0.0002 J	0.0003 J	0.0002 J	0.0002 J	ND	0.0003 J
Dissolved Nickel	mg/L	0.0019 J	0.0007 J	0.0010 J	0.00100 J	0.0017 J	0.0014 J
Total Hardness							
Hardness	mg/L	266.9	232.7	226.1	226.9	214.9	175.0
Field Paramete	ers						
Ph	SU	7.51	7.64	7.59	7.59	6.74	6.06

A detailed description of the sampling procedure, results, and data evaluation are included in this Sampling Report. The laboratory data validation reports and the complete laboratory analytical reports, including Quality Assurance/Quality Control (QA/QC) are attached.

2.0 INTRODUCTION

This Daily Surface Water and Outfall Sampling Results Report for March 19, 2025 (Sampling Report) was prepared by TRC Environmental Corporation, Inc., (TRC) on behalf of SPS Technologies Abington PA (SPS). The SPS facility is located at 301 Highland Avenue, Jenkintown, PA 19046 (Site). This Sampling Report was prepared to provide the off-Site surface water sampling results from March 19, 2025, which were collected in accordance with WSP USA Inc. Surface Water and Outfall Sampling Plan revised on March 5, 2025.

2.1 Background

The Site is currently owned by SPS Technologies. On February 17, 2025, a fire broke out at the facility causing major damage and a cessation of operation. Prior to the fire, facility operations consisted of manufacturing of bolts, nuts, screws, rivets, washers, furniture, and fixtures.

3.0 OFF-SITE SURFACE WATER INVESTIGATION

TRC collected five surface water samples at the approved upstream and downstream sampling locations along the Tookany and Tacony Creeks on March 19, 2025. The locations are located northeast and west from the facility, and downstream from the conjoined stream south from the facility. Outfalls were not sampled during this event because there was no precipitation.

3.1 Surface Water Sampling Methodology

TRC collected the surface water samples in accordance with the Sampling Plan. Field data collected from each surface water during the sampling include:

- Water depth
- Weather conditions
- Physical characteristics (clarity, appearance, odor)
- Water Quality (DO, pH, OPR, turbidity, conductivity, and temperature)
- Water velocity (visibly moving)
- Additional observations (e.g. wildlife sightings)

The field data is documented in the daily field sampling form included as **Appendix A**, except for the infield pH measurement, which is summarized in **Table 1**.

3.2 Surface Water Sampling

All samples were submitted to Pace Analytical in Westborough, Massachusetts (Certification No. 68-03671) and Pace Analytical in Mansfield, Massachusetts (Certification No. 68-02089), following chain-of-custody protocols.

3.3 Surface Water Sampling Results

Surface water samples were collected from the five approved locations in accordance with Sampling Plan for the following parameters:

- Oil & Grease
- Free Cyanide
- Total Cyanide
- Total Nickel
- Dissolved Nickel
- Total Chromium
- Dissolved Chromium
- Hexavalent Chromium (calculated for Trivalent Chromium)
- Methyl ethyl ketone (2-Butanone)
- Toluene
- Total Hardness

The validated analytical results are summarized in **Table 1**. The sampling locations are shown on **Figures 1** and **2**. 4

4.0 DATA QUALITY ASSURANCE/QUALITY CONTROL MANAGEMENT

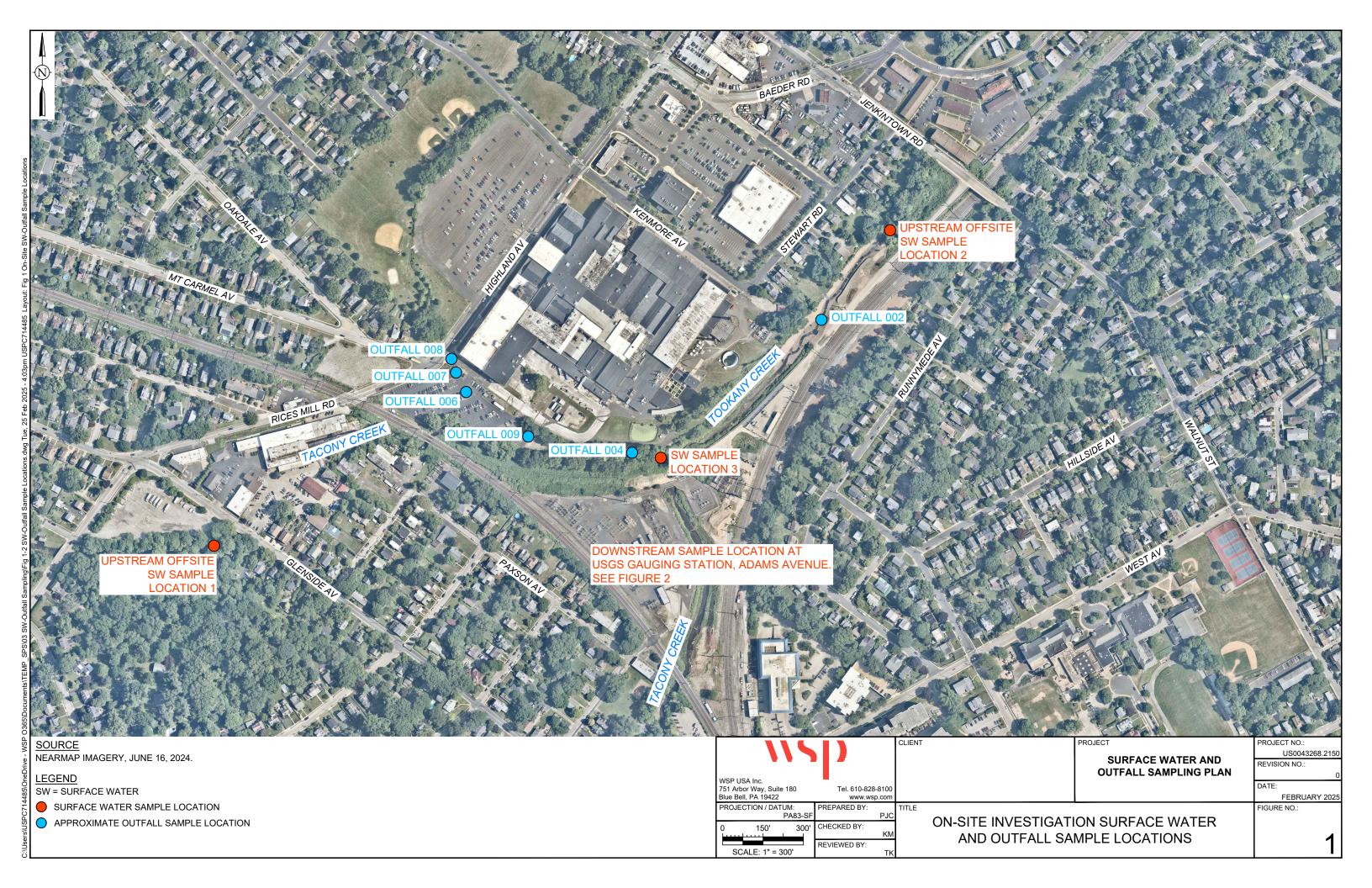
4.1 Field Quality Assurance/Quality Control Requirements.

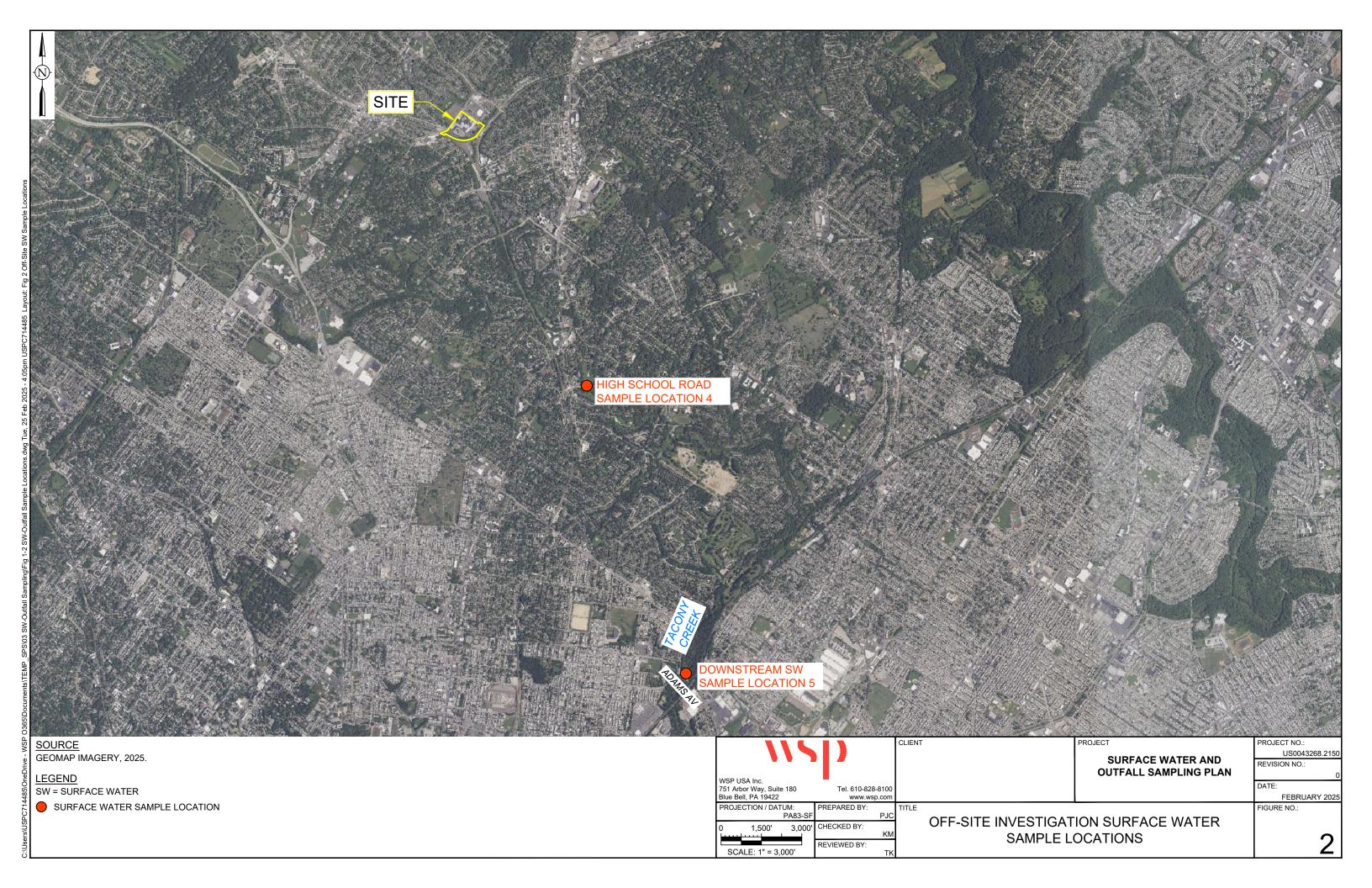
Field personnel performed data quality control (QC) verification of field measurements. This process includes equipment calibration, reviewing calibration records, and duplicate readings to ensure data accuracy. Field measurements were documented in the field information form included as **Appendix A** and pH readings are summarized in **Table 1**.

All hand equipment used during the sampling event was cleaned with Alconox and distilled water. Disposable equipment was used for sample collection and processing as appropriate. Field personnel wore disposable nitrile sampling gloves during sampling activities. Sampling gloves were discarded following collection at each sample location and replaced before handling decontaminated equipment or work surfaces.

4.2 Analytical QA/QC Samples

All quality assurance and quality control (QA/QC), field duplicates and matrix spikes/matrix spike duplicates (MS/MSD) were collected in accordance with the Sampling Plan at a rate of 1 per 20 samples per day. A trip blank was included daily for volatile organic compounds (VOCs). A field blank was not collected because single-use disposable ladles were used to collect samples.


4.3 Data Evaluation


The reliability of the analytical data was evaluated to assess its suitability for use in off-Site surface water monitoring. In particular, the data's precision, accuracy, and sensitivity were evaluated based on field sampling documentation, adherence to sample holding times, and analysis of the QC samples (duplicates, spikes, and blanks). Data validation was performed in accordance with the Sampling Plan. The data validation report is included as **Appendix B**. The laboratory analytical report is included as **Appendix C**.

4.4 References

SPS Technologies Sampling Plan, revised on March 5, 2025

Project Number: 658978

Surface Water Analytical Results Daily Surface Water Sampling Results Report SPS Technologies Jenkintown, Pennsylvania

Sample Location Field Sample ID Lab Sample ID Sampling Date		Upstream L	Offsite SW ocation 1	Sample	Upstream (Offsite SW ocation 2	Sample		W Sample ocation 3			SW Sample ion 3 (Dup	-		ool Road S ocation 4	Sample		eam SW Sa ocation 5	ımple
			V2-031925		SV	SW1-031925		SW3-031925		DUP-031925		SW4-031925			SW	/5-031925			
		L2	516068-02		L2	516068-01		L2	516068-03		L	2516068-0	6	L2	516068-04		L2	16068-05	
		3	3/19/2025		3	3/19/2025		3	/19/2025			3/19/2025		3	/19/2025		3.	/19/2025	
	Matrix		Water			Water			Water			Water			Water			Water	
Parameter	Units	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL
Volatile Organic Compounds																			
Toluene	mg/L	ND		0.0010	ND		0.0010	ND		0.0010	ND		0.0010	ND		0.0010	ND		0.0010
2-Butanone (MEK)	mg/L	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.010
General Chemistry																			
Chromium, Trivalent	mg/L	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.010
Chromium, Hexavalent	mg/L	0.007	J	0.010	ND		0.010	0.006	J	0.010	0.003	J	0.010	0.005	J	0.010	0.008	J	0.010
Total Cyanide	mg/L	ND		0.005	ND		0.005	ND		0.005	ND		0.005	ND		0.005	ND		0.005
Free Cyanide	mg/L	ND		0.010	ND		0.010	0.004	J	0.010	0.004	J	0.010	0.004	J	0.010	0.004	J	0.010
Oil & Grease	mg/L	ND		4.0	ND		4.0	ND		4.0	ND		4.0	ND		4.0	ND		4.0
Total Metals																			
Total Chromium	mg/L	0.00029	J	0.00100	0.00031	J	0.00100	0.00029	J	0.00100	0.00027	J	0.00100	0.00019	J	0.00100	0.00870		0.00100
Total Nickel	mg/L	0.00206		0.00200	0.00087	J	0.00200	0.00100	J	0.00200	0.00100	J	0.00200	0.00168	J	0.00200	0.00151	J	0.00200
Dissolved Metals																			
Dissolved Chromium	mg/L	0.0002	J	0.0010	0.0003	J	0.0010	0.0002	J	0.0010	0.0002	J	0.0010	ND		0.0010	0.0003	J	0.0010
Dissolved Nickel	mg/L	0.0019	J	0.0020	0.0007	J	0.0020	0.0010	J	0.0020	0.001	J	0.0020	0.0017	J	0.0020	0.0014	J	0.0020
Total Hardness			•		•	•	,	•	•			,		•	,	,	•	,	
Hardness	mg/L	266.9		0.5400	232.7		0.5400	226.1		0.5400	226.9		0.5400	214.9		0.5400	175.0		0.5400
Field Parameters					•												•		
pH ¹	SU	7.51			7.64			7.59			7.59			6.74			6.06		

Notes:

1.) Field measurements for pH were performed by TRC field personnel prior to sample collection using a Horiba U-52. Field measurements were not validated.

Abbreviations: mg/L: milligrams per liter ND: Non-Detect

Q: Qualifier

RL: Reporting Limit SU: Standard Units

Qualifiers: J - Estimated Result

	Date: 3/19/1	025	
SURFACE WATER SAM	PLE FIFLD INFORMATION FO	RM	
	Site:	SPS	

Project Number: 658978

Site: About on PA Project Number: Water Quality Motor Holing U-50 S/N: U[103/2 X Meter Galibrated @: 3/19/15 9855 Flow Meter: OH MF DCO S/N: 336387 Sampling Date/Time: \$U.5 @ 0.35 SW/48/035 SW/10 11 (5) Sampling Date/Time: \$U.5 @ 0.35 SW/48/035 SW/10 11 (5) Sampling Device: Telescopic Dependent Color Sample Characteristics: Ulax NO Odor Analytica Parameters:	Collect Ms/MSD from SU-5 Collect Dup-031925 from sw3 PTD 0.0 at all locartions SWZ-M. Mors and Beise Observed SW3-M. Mors of Orese Observed SW3-M. Mors of Sward
Weather Conditions: SUNNY 468 L37 Wind 3M94E	

SAMFLE/STATION	STATION DESCRIPTION (stream, take river)	DATE	TIME	TUTAL DEPTH	SAMPLE DEPTH	WATER TEMP	SALINITY						
SW5-031925	Crech	03/19/25	himin	inches	D	Celsius	ppt	SU	mS/cm	CRP mV	TURBIDITY	DO	VELOCITY
	Sample Characteristics		0935 No	10	8	9.09	0.4	606	0.861	327	1.0	8.74	0.255
WY-031925	Creek	03/19/25	1	Odar	20							0-71	0.0,
	Sample Characteristics				23.5	10.31	0.5	6.74	0.991	293	0.0	14.27	0.20
N1-031925		The second secon	NO	8.5	**			-	-/			11.27	40.00
	Sample Characteristics:	63/19/25 cear			4.25	12.00	0.4	7.64	0.874	257	0.8	13.33	0.16
12-03/925			NO	Oder					911		0	1772	0.16
		Maria Cara Cara Cara Cara Cara Cara Cara	1150	18	9	12.19	0.6	751	1.21	302	0.7	10.87	000
13-051925	Sample Characteristics :		No	Oder		0 (1						1007	0.0
1103		03/11/25	1230		14.25	13.18	6.2	7.59	0.881	199	0.0	10:7	3029
	Sample Characteristics:	Clear	No	oder			1000		- 501	BALL I	0.0	10 /	10.7
								11111		The same		No.	
	Sample Characteristics :		100									100	
ge Reacing				100000									
								Partie	77-				

Data Validation Report

Site: SPS Technologies, Surface Water Sampling Laboratory: Pace Analytical, Westborough and Mansfield, MA

SDG No.: L2516068

Parameters: Select Volatile Organic Compounds (VOCs), Select Metals, Hardness, Total

Cyanide, Free Cyanide, Oil & Grease, Hexavalent Chromium, Trivalent

Chromium

Data Reviewer: Jessica Esser/TRC
Peer Reviewer: Kristen Morin/TRC
Date: March 21, 2025

Samples Reviewed and Evaluation Summary

6 Surface Water Samples: SW1-031925, SW2-031925, SW3-031925, SW4-031925,

SW5-031925, DUP-031925¹

1 Trip Blank: TRIP BLANK-031925

The above-listed samples were collected on March 19, 2025 and were analyzed for one or more of the following parameters.

- Select VOCs (toluene, 2-butanone) using EPA Method 624.1
- Select total and dissolved metals (chromium, nickel) using EPA Method 200.8
- Total hardness (by calculation) using EPA Method 200.8
- Total cyanide using Standard Methods (SM) 4500 CN-CE
- Free cyanide using SM 4500 CN-E (M)
- Oil and grease using EPA Method 1664B
- Hexavalent chromium using SM 3500 CR-B
- Trivalent chromium by calculation

Limited data validation was performed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-20-005), November 2020 and USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA-542-R-20-006), November 2020, modified for the methodologies utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
- * Blanks
- Surrogate Recoveries (VOCs only)
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- Laboratory Control Sample (LCS) Results
- Field Duplicate Results
 - Sample Results and Reported Quantitation Limits (QLs)
- * All criteria were met.

¹Field duplicate of SW3-031925

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. Qualification of the data as a result of sampling error was not required. Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select metals, free cyanide, and hexavalent chromium results
 that were below the lowest calibration standard and QL. These results were qualified as
 estimated (J) by the laboratory in the associated samples. These results can be used for
 project objectives as estimated values, which may have a minor impact on the data usability.
- The positive results for dissolved chromium in samples SW1-031925, SW2-031925, SW3-031925, SW5-031925, and DUP-031925 were qualified as estimated (J) due to high MSD percent recovery (%R) and MS/MSD variability. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level 2 data package. It should be noted that the date of collection for the trip blank was listed as 3/17/25 on the chain-of-custody (COC). For purposes of this assessment, it was assumed the date of collection was the same as the associated samples.

Holding Times and Sample Preservation

All holding time and preservation criteria were met for all parameters.

Blanks

Target analytes were not detected in the associated laboratory method blanks. Target VOCs were not detected in the trip blank. A field blank was not submitted with the data set.

Surrogate Recoveries (VOCs only)

All criteria were met.

MS/MSD Results

MS/MSD analyses were performed on sample SW5-031925 for VOCs, total and dissolved metals, hardness, total cyanide, free cyanide, oil and grease, and hexavalent chromium. With the exception of dissolved chromium, all criteria were met. The %R for dissolved chromium in the MSD (199%) and the relative percent difference (RPD) for dissolved chromium (69%) in the MS/MSD analyses performed on sample SW5-031925 were above the laboratory acceptance criteria (70-130% and 20%, respectively). Therefore, the positive results for dissolved chromium in samples SW1-031925, SW2-031925, SW3-031925, SW5-031925, and DUP-031925 were qualified as estimated (J). No qualification was required on this basis for the nondetect (ND) result for dissolved chromium in sample SW4-031925.

Laboratory Duplicate Results

Laboratory duplicate analyses were performed on sample SW5-031925 for total cyanide, free cyanide, oil and grease, and hexavalent chromium. All criteria were met.

LCS Results

All criteria were met for all parameters.

Field Duplicate Results

Samples SW3-031925 and DUP-031925 were submitted as the field duplicate pair with this sample set. The following table summarizes the relative percent differences (RPDs) and/or absolute differences (AbsDs), where applicable, of the detected analytes after validation. All criteria were met.

Analyte	QLs (mg/L)	SW3-031925 (mg/L)	DUP-031925 RPD (%) or (mg/L) AbsD (mg/L)		Validation Action
Total Chromium	0.001	0.00029 J	0.00027 J	AbsD = 0.00002	
Total Nickel	0.002	0.00100 J	0.00100 J	AbsD = 0	
Hardness	0.54	226.1	226.9	RPD = 0.4	
Dissolved Chromium	0.001	0.0002 J	0.0002 J	AbsD = 0	None; all criteria were met.
Dissolved Nickel	0.002	0.0010 J	0.0010 J	AbsD = 0	
Free Cyanide	0.010	0.004 J	0.004 J	AbsD = 0	
Hexavalent Chromium	0.010	0.006 J	0.003 J	AbsD = 0.003	

Field duplicate criteria are as follows:

- RPD \leq 30 when positive results for both samples are \geq 5x QL
- AbsD ≤ QL when one or both results are < 5x QL

Sample Results and Reported Quantitation Limits

Select metals, free cyanide, and hexavalent chromium results were reported that were below the lowest calibration standard level and QL. These results were qualified as estimated (J) in the associated samples by the laboratory.

There were no dilutions performed on the samples in this data set.

The total and dissolved metal results were evaluated during data validation to identify any dissolved concentrations that were significantly higher than the associated total concentration. The evaluation was based on the following criteria to determine significance: percent difference (%D) should be \leq 20% when dissolved results are greater than total results and both results are \geq 5x the QL. If the dissolved result was > the total and one or both results were \leq 5x the QL, then the AbsD should be \leq 2x the QL. These criteria were met for all samples.

QUALIFIED FORM 1s

VOLATILES

03/19/25 11:15

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab Number: L2516068

Report Date: 03/21/25

Lab ID: L2516068-01

Client ID: SW1-031925 Sample Location: JENKINTOWN, PA Date Received: 03/19/25 Field Prep: Refer to COC

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/20/25 09:53

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Toluene	ND		mg/l	0.0010	0.00031	1		
2-Butanone	ND		mg/l	0.010	0.0010	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	80		60-140	
Fluorobenzene	70		60-140	
4-Bromofluorobenzene	116		60-140	

03/19/25 11:50

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Report Date: 03/21/25

Date Collected:

Lab Number: L2516068

SAMPLE RESULTS

Lab ID: L2516068-02

Client ID: SW2-031925 Sample Location: JENKINTOWN, PA Date Received: 03/19/25 Field Prep: Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/20/25 10:26

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Toluene	ND		mg/l	0.0010	0.00031	1				
2-Butanone	ND		mg/l	0.010	0.0010	1				

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	77		60-140
Fluorobenzene	71		60-140
4-Bromofluorobenzene	120		60-140

L2516068

Project Name: Lab Number: SPS TECHNOLOGIES

Project Number: 658978

Report Date: 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-03 Date Collected: 03/19/25 12:30

Client ID: Date Received: 03/19/25 SW3-031925 Field Prep: Sample Location: Refer to COC JENKINTOWN, PA

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/20/25 10:57

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifi		eptance iteria

2-Butanone	ND	mg/l	0.010	0.0010	1	
Surrogate		% Recovery	Qualifier	Accepta Criter		
Pentafluorobenzene		77		60-1	40	
Fluorobenzene		71		60-1	40	
4-Bromofluorobenzene		117		60-1	40	

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab Number: L2516068

Report Date: 03/21/25

Lab ID: L2516068-04

Client ID: SW4-031925 Sample Location:

Field Prep:

03/19/25 10:35

JENKINTOWN, PA

Date Received:

Date Collected:

03/19/25 Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/20/25 11:29

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - V						
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	78		60-140	
Fluorobenzene	70		60-140	
4-Bromofluorobenzene	118		60-140	

60-140

60-140

03/19/25 09:35

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab Number: L2516068

Report Date: 03/21/25

Lab ID: Date Collected: L2516068-05

Date Received: Client ID: 03/19/25 SW5-031925 Sample Location: Field Prep: JENKINTOWN, PA Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/20/25 12:02

Analyst: GMT

Fluorobenzene

4-Bromofluorobenzene

Parameter	Result	Qualifier Uni	its RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab					
Toluene	ND	mg	y/I 0.0010	0.00031	1	
2-Butanone	ND	mg	y/l 0.010	0.0010	1	
Surrogate		% Re	ecovery Quali		ptance iteria	
Pentafluorobenzene			76	6	60-140	

68

117

L2516068

03/19/25 00:00

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Report Date: 03/21/25

Lab Number:

Date Collected:

Lab ID: L2516068-06

Client ID: DUP-031925 Sample Location: JENKINTOWN, PA Date Received: 03/19/25 Field Prep: Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/20/25 12:34

Parameter	Result Qualifier		Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Toluene	ND		mg/l	0.0010	0.00031	1				
2-Butanone	ND		mg/l	0.010	0.0010	1				

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	75		60-140
Fluorobenzene	71		60-140
4-Bromofluorobenzene	120		60-140

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab Number: L2516068

Report Date: 03/21/25

Lab ID: L2516068-07 Date Collected: 03/17/25 00:00

Client ID: Date Received: 03/19/25 TRIP BLANK-031925 Field Prep: Sample Location: JENKINTOWN, PA None

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/20/25 09:21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - V	Vestborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogata			0/ Вология			ptance

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	80		60-140	
Fluorobenzene	71		60-140	
4-Bromofluorobenzene	119		60-140	

METALS

 Project Name:
 SPS TECHNOLOGIES

 Lab Number:
 L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

 Lab ID:
 L2516068-01
 Date Collected:
 03/19/25 11:15

 Client ID:
 SW1-031925
 Date Received:
 03/19/25

Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	result	quamici	Onico		MDL		· · · · · · · · · · · · · · · · · · ·	<u> </u>			
Total Metals - Mans	field Lab										
Chromium, Total	0.00031	J	mg/l	0.00100	0.00017	1	03/20/25 07:32	03/20/25 11:29	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00087	J	mg/l	0.00200	0.00055	1	03/20/25 07:32	03/20/25 11:29	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculatior	n) - Mansfie	eld Lab								
Hardness	232.7		mg/l	0.5400	NA	1	03/20/25 07:32	03/20/25 11:29	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/20/25 11:29	NA	107,-	
Dissolved Metals - N	/lansfield l	Lab									
Chromium, Dissolved	0.0003	J J	mg/l	0.0010	0.0002	1	03/20/25 07:32	03/20/25 11:47	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0007	J	mg/l	0.0020	0.0006	1	03/20/25 07:32	03/20/25 11:47	EPA 3005A	3,200.8	NTB

Project Name:SPS TECHNOLOGIESLab Number:L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

 Lab ID:
 L2516068-02
 Date Collected:
 03/19/25 11:50

 Client ID:
 SW2-031925
 Date Received:
 03/19/25

Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Chromium, Total	0.00029	J	mg/l	0.00100	0.00017	1	03/20/25 07:32	03/20/25 11:33	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00206		mg/l	0.00200	0.00055	1	03/20/25 07:32	03/20/25 11:33	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfie	eld Lab								
Hardness	266.9		mg/l	0.5400	NA	1	03/20/25 07:32	03/20/25 11:33	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/20/25 11:33	NA	107,-	
Dissolved Metals - N	/lansfield l	_ab									
Chromium, Dissolved	0.0002	1 1	mg/l	0.0010	0.0002	1	03/20/25 07:32	03/20/25 11:52	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0019	J	mg/l	0.0020	0.0006	1	03/20/25 07:32	03/20/25 11:52	EPA 3005A	3,200.8	NTB

Refer to COC

Field Prep:

Project Name: Lab Number: SPS TECHNOLOGIES L2516068

Project Number: Report Date: 658978 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-03 Date Collected: 03/19/25 12:30 Client ID: SW3-031925 Date Received: 03/19/25 Sample Location:

Sample Depth:

Matrix: Water

JENKINTOWN, PA

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
ield Lab										
0.00029	J	mg/l	0.00100	0.00017	1	03/20/25 07:32	03/20/25 11:38	EPA 3005A	3,200.8	NTB
0.00100	J	mg/l	0.00200	0.00055	1	03/20/25 07:32	2 03/20/25 11:38	EPA 3005A	3,200.8	NTB
calculation	n) - Mansfie	eld Lab								
226.1		mg/l	0.5400	NA	1	03/20/25 07:32	2 03/20/25 11:38	EPA 3005A	3,200.8	NTB
Mansfield	d Lab									
ND		mg/l	0.010	0.003	1		03/20/25 11:38	NA	107,-	
1ansfield l	_ab									
0.0002	ηJ	mg/l	0.0010	0.0002	1	03/20/25 07:32	2 03/20/25 11:56	EPA 3005A	3,200.8	NTB
0.0010	J	mg/l	0.0020	0.0006	1	03/20/25 07:32	2 03/20/25 11:56	EPA 3005A	3,200.8	NTB
	ield Lab 0.00029 0.00100 calculation 226.1 Mansfield ND flansfield I 0.0002	ield Lab 0.00029 J 0.00100 J calculation) - Mansfie 226.1 Mansfield Lab ND Mansfield Lab 0.0002 J J	ield Lab 0.00029 J mg/l 0.00100 J mg/l calculation) - Mansfield Lab 226.1 mg/l Mansfield Lab ND mg/l Mansfield Lab 0.0002 J J mg/l	ield Lab 0.00029 J mg/l 0.00100 0.00100 J mg/l 0.00200 calculation) - Mansfield Lab 226.1 mg/l 0.5400 Mansfield Lab ND mg/l 0.010 Mansfield Lab 0.0002 J J mg/l 0.0010	ield Lab 0.00029 J mg/l 0.00100 0.00017 0.00100 J mg/l 0.00200 0.00055 calculation) - Mansfield Lab 226.1 mg/l 0.5400 NA Mansfield Lab ND mg/l 0.010 0.003 Mansfield Lab 0.0002 J mg/l 0.0010 0.0002	Result Qualifier Units RL MDL Factor Field Lab 0.00029 J mg/l 0.00100 0.00017 1 0.00100 J mg/l 0.00200 0.00055 1 Calculation) - Mansfield Lab 226.1 mg/l 0.5400 NA 1 Mansfield Lab ND mg/l 0.010 0.003 1 Mansfield Lab 0.0002 J J mg/l 0.0010 0.0002 1	Result Qualifier Units RL MDL Factor Prepared Field Lab 0.00029 J mg/l 0.00100 0.00017 1 03/20/25 07:32 0.00100 J mg/l 0.00200 0.00055 1 03/20/25 07:32 calculation) - Mansfield Lab 226.1 mg/l 0.5400 NA 1 03/20/25 07:32 Mansfield Lab ND mg/l 0.010 0.003 1 Mansfield Lab 0.0002 J mg/l 0.0010 0.0002 1 03/20/25 07:32	Result Qualifier Units RL MDL Factor Prepared Analyzed	Result Qualifier Units RL MDL Factor Prepared Analyzed Method field Lab 0.00029 J mg/l 0.00100 0.00017 1 03/20/25 07:32 03/20/25 11:38 EPA 3005A 0.00100 J mg/l 0.00200 0.00055 1 03/20/25 07:32 03/20/25 11:38 EPA 3005A Calculation) - Mansfield Lab 226.1 mg/l 0.5400 NA 1 03/20/25 07:32 03/20/25 11:38 EPA 3005A Mansfield Lab ND mg/l 0.010 0.003 1 03/20/25 11:38 NA Mansfield Lab 0.0002 J J mg/l 0.0010 0.0002 1 03/20/25 07:32 03/20/25 11:56 EPA 3005A	Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method

L2516068

Project Name: SPS TECHNOLOGIES Lab Number:

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

 Lab ID:
 L2516068-04
 Date Collected:
 03/19/25 10:35

 Client ID:
 SW4-031925
 Date Received:
 03/19/25

Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Trooun						<u> </u>	-			Analyst
Total Metals - Manst	field Lab										
Chromium, Total	0.00019	J	mg/l	0.00100	0.00017	1	03/20/25 07:32	03/20/25 11:42	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00168	J	mg/l	0.00200	0.00055	1	03/20/25 07:32	03/20/25 11:42	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfie	eld Lab								
Hardness	214.9		mg/l	0.5400	NA	1	03/20/25 07:32	03/20/25 11:42	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/20/25 11:42	NA	107,-	
Dissolved Metals - N	/lansfield l	Lab									
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	03/20/25 07:32	03/20/25 12:01	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0017	J	mg/l	0.0020	0.0006	1	03/20/25 07:32	03/20/25 12:01	EPA 3005A	3,200.8	NTB

Project Name:SPS TECHNOLOGIESLab Number:L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

 Lab ID:
 L2516068-05
 Date Collected:
 03/19/25 09:35

 Client ID:
 SW5-031925
 Date Received:
 03/19/25

Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Chromium, Total	0.00870		mg/l	0.00100	0.00017	1	03/20/25 07:32	03/20/25 11:15	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00151	J	mg/l	0.00200	0.00055	1	03/20/25 07:32	03/20/25 11:15	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfie	eld Lab								
Hardness	175.0		mg/l	0.5400	NA	1	03/20/25 07:32	03/20/25 11:15	EPA 3005A	3,200.8	NTB
General Chemistry - Mansfield Lab											
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/20/25 11:15	NA	107,-	
Dissolved Metals - Mansfield Lab											
Chromium, Dissolved	0.0003	ηJ	mg/l	0.0010	0.0002	1	03/20/25 07:32	03/20/25 11:33	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0014	J	mg/l	0.0020	0.0006	1	03/20/25 07:32	03/20/25 11:33	EPA 3005A	3,200.8	NTB

Project Name:SPS TECHNOLOGIESLab Number:L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

 Lab ID:
 L2516068-06
 Date Collected:
 03/19/25 00:00

 Client ID:
 DUP-031925
 Date Received:
 03/19/25

Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Chromium, Total	0.00027	J	mg/l	0.00100	0.00017	1	03/20/25 07:32	03/20/25 11:47	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00100	J	mg/l	0.00200	0.00055	1	03/20/25 07:32	03/20/25 11:47	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfie	eld Lab								
Hardness	226.9		mg/l	0.5400	NA	1	03/20/25 07:32	03/20/25 11:47	EPA 3005A	3,200.8	NTB
General Chemistry - Mansfield Lab											
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/20/25 11:47	NA	107,-	
Dissolved Metals - Mansfield Lab											
Chromium, Dissolved	0.0002	ηJ	mg/l	0.0010	0.0002	1	03/20/25 07:32	03/20/25 12:05	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.001	J	mg/l	0.0020	0.0006	1	03/20/25 07:32	03/20/25 12:05	EPA 3005A	3,200.8	NTB

INORGANICS & MISCELLANEOUS

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-01 Date Collected: 03/19/25 11:15

Client ID: SW1-031925 Date Received: 03/19/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
General Chemistry - Westborough Lab											
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 03:15	03/21/25 14:48	121,4500CN-CE	JRO	
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/20/25 07:25	121,4500CN- E(M)	KAF	
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/20/25 08:34	03/20/25 12:19	140,1664B	TPR	
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/20/25 07:51	03/20/25 08:09	121,3500CR-B	DMO	

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-02 Date Collected: 03/19/25 11:50

Client ID: SW2-031925 Date Received: 03/19/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ab								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 03:15	03/21/25 14:49	121,4500CN-CE	JRO
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/20/25 07:25	121,4500CN- E(M)	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/20/25 08:34	03/20/25 12:58	140,1664B	TPR
Chromium, Hexavalent	0.007	J	mg/l	0.010	0.003	1	03/20/25 07:51	03/20/25 08:10	121,3500CR-B	DMO

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-03 Date Collected: 03/19/25 12:30

Client ID: SW3-031925 Date Received: 03/19/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ab								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 03:15	03/21/25 14:50	121,4500CN-CE	JRO
Cyanide, Free	0.004	J	mg/l	0.010	0.003	1	-	03/20/25 07:25	121,4500CN-	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/20/25 08:34	03/20/25 12:57	E(M) 140,1664B	TPR
Chromium, Hexavalent	0.006	J	mg/l	0.010	0.003	1	03/20/25 07:51	03/20/25 08:11	121,3500CR-B	DMO

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-04 Date Collected: 03/19/25 10:35

Client ID: SW4-031925 Date Received: 03/19/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ab								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 03:15	03/21/25 14:51	121,4500CN-CE	JRO
Cyanide, Free	0.004	J	mg/l	0.010	0.003	1	-	03/20/25 07:25	121,4500CN- E(M)	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/20/25 08:34	03/20/25 13:01	140,1664B	TPR
Chromium, Hexavalent	0.005	J	mg/l	0.010	0.003	1	03/20/25 07:51	03/20/25 08:12	121,3500CR-B	DMO

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-05 Date Collected: 03/19/25 09:35

Client ID: SW5-031925 Date Received: 03/19/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ab								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 03:15	03/21/25 14:52	121,4500CN-CE	JRO
Cyanide, Free	0.004	J	mg/l	0.010	0.003	1	-	03/20/25 07:25	121,4500CN- E(M)	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/20/25 08:34	03/20/25 10:18	140,1664B	TPR
Chromium, Hexavalent	0.008	J	mg/l	0.010	0.003	1	03/20/25 07:51	03/20/25 08:13	121,3500CR-B	DMO

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-06 Date Collected: 03/19/25 00:00

Client ID: DUP-031925 Date Received: 03/19/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ab								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 03:15	03/21/25 14:59	121,4500CN-CE	JRO
Cyanide, Free	0.004	J	mg/l	0.010	0.003	1	-	03/20/25 07:25	121,4500CN- E(M)	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/20/25 08:34	03/20/25 13:02	140,1664B	TPR
Chromium, Hexavalent	0.003	J	mg/l	0.010	0.003	1	03/20/25 07:51	03/20/25 08:16	121,3500CR-B	DMO

ANALYTICAL REPORT

Lab Number: L2516068

Client: TRC Environmental

1617 JFK Blvd.

Suite 510

Philadelphia, PA 19103

ATTN: Julie Acton
Phone: (215) 563-2122

Project Name: SPS TECHNOLOGIES

Project Number: 658978 Report Date: 03/21/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Project Name: SPS TECHNOLOGIES

Project Number: 658978

 Lab Number:
 L2516068

 Report Date:
 03/21/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2516068-01	SW1-031925	WATER	JENKINTOWN, PA	03/19/25 11:15	03/19/25
L2516068-02	SW2-031925	WATER	JENKINTOWN, PA	03/19/25 11:50	03/19/25
L2516068-03	SW3-031925	WATER	JENKINTOWN, PA	03/19/25 12:30	03/19/25
L2516068-04	SW4-031925	WATER	JENKINTOWN, PA	03/19/25 10:35	03/19/25
L2516068-05	SW5-031925	WATER	JENKINTOWN, PA	03/19/25 09:35	03/19/25
L2516068-06	DUP-031925	WATER	JENKINTOWN, PA	03/19/25 00:00	03/19/25
L2516068-07	TRIP BLANK-031925	WATER	JENKINTOWN, PA	03/17/25 00:00	03/19/25

L2516068

Lab Number:

Project Name: SPS TECHNOLOGIES

Project Number: 658978 Report Date: 03/21/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Todos contact i rojost management at coc oz i ozzo manariy quodione.										

Please contact Project Management at 800-624-9220 with any questions

L2516068

Lab Number:

Project Name: SPS TECHNOLOGIES

Project Number: 658978 Report Date: 03/21/25

Case Narrative (continued)

Report Submission

March 21, 2025: This final report includes the results of all requested analyses.

March 20, 2025: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Dissolved Metals

The WG2042793-4 MSD recovery performed on L2516068-05 recovered outside the 70-130% acceptance criteria for chromium (199%). The result for this analyte is considered suspect due to either the heterogeneous nature of the sample or matrix interference. The MS/MSD RPD for chromium (69%) is above the acceptance criteria.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/21/25

600, Sew on Kelly Stenstrom

Pace

ORGANICS

VOLATILES

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Report Date:

Lab Number:

L2516068 03/21/25

Lab ID: L2516068-01

Client ID: Sample Location:

SW1-031925 JENKINTOWN, PA Date Collected: Date Received:

03/19/25 11:15

Field Prep:

03/19/25 Refer to COC

Sample Depth:

Matrix: Analytical Method: 128,624.1 Analytical Date:

Water

03/20/25 09:53

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	- Westborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	80		60-140
Fluorobenzene	70		60-140
4-Bromofluorobenzene	116		60-140

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab Number: L2516068

Report Date: 03/21/25

Lab ID: L2516068-02

Client ID: SW2-031925 Sample Location: JENKINTOWN, PA

03/19/25 11:50 Date Received: 03/19/25 Refer to COC

Date Collected:

Field Prep:

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/20/25 10:26

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	77		60-140
Fluorobenzene	71		60-140
4-Bromofluorobenzene	120		60-140

L2516068

Project Name: Lab Number: SPS TECHNOLOGIES

Project Number: Report Date: 658978 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-03 Date Collected: 03/19/25 12:30

Client ID: Date Received: 03/19/25 SW3-031925 Field Prep: Sample Location: Refer to COC JENKINTOWN, PA

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/20/25 10:57

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	77		60-140	
Fluorobenzene	71		60-140	
4-Bromofluorobenzene	117		60-140	

L2516068

03/21/25

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Date Collected: 03/19/25 10:35

Lab Number:

Report Date:

Lab ID: L2516068-04

Client ID: SW4-031925 Sample Location: JENKINTOWN, PA Date Received: 03/19/25 Field Prep: Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/20/25 11:29

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - \	Westborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	78		60-140	
Fluorobenzene	70		60-140	
4-Bromofluorobenzene	118		60-140	

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab Number: L2516068

Report Date: 03/21/25

Lab ID: L2516068-05 Client ID: SW5-031925

Sample Location: JENKINTOWN, PA Date Collected: Date Received: 03/19/25

03/19/25 09:35

Field Prep:

Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/20/25 12:02

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Toluene	ND		mg/l	0.0010	0.00031	1		
2-Butanone	ND		mg/l	0.010	0.0010	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	76		60-140	
Fluorobenzene	68		60-140	
4-Bromofluorobenzene	117		60-140	

03/19/25 00:00

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab Number: L2516068

Report Date: 03/21/25

Lab ID: L2516068-06 Date Collected:

> Date Received: 03/19/25 DUP-031925 Field Prep: Refer to COC JENKINTOWN, PA

Sample Depth:

Sample Location:

Client ID:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/20/25 12:34

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Toluene	ND		mg/l	0.0010	0.00031	1		
2-Butanone	ND		mg/l	0.010	0.0010	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	75		60-140	
Fluorobenzene	71		60-140	
4-Bromofluorobenzene	120		60-140	

Project Name: SPS TECHNOLOGIES

Project Number: 658978

SAMPLE RESULTS

Lab Number: L2516068

Report Date: 03/21/25

Lab ID: L2516068-07

Client ID: TRIP BLANK-031925 Sample Location: JENKINTOWN, PA Date Collected: 03/17/25 00:00
Date Received: 03/19/25
Field Prep: None

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 03/20/25 09:21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - \	Westborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	80		60-140	
Fluorobenzene	71		60-140	
4-Bromofluorobenzene	119		60-140	

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 03/20/25 08:49

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Westl	oorough Lab	for sample	e(s): 01-07	Batch:	WG2043087-4	
Toluene	ND		mg/l	0.0010	0.00031	
2-Butanone	ND		mg/l	0.010	0.0010	

	Accept				
Surrogate	%Recovery	Qualifier Criteria			
Pentafluorobenzene	84	60-140			
Fluorobenzene	72	60-140			
4-Bromofluorobenzene	113	60-140			

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number:

L2516068

Report Date:

03/21/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westbord	ough Lab Associat	ed sample(s)	: 01-07 Batch	: WG204	13087-3				
Toluene	115		-		70-130	-		41	
2-Butanone	72		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qu	Acceptance ual Criteria
Pentafluorobenzene	90		60-140
Fluorobenzene	86		60-140
4-Bromofluorobenzene	109		60-140

Matrix Spike Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number:

L2516068

Report Date:

03/21/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	_	covery imits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS Client ID: SW5-031925	- Westborou	igh Lab Ass	sociated sar	mple(s): 01-07	QC Bate	ch ID: Wo	32043087-5 V	VG204308 [°]	7-6 QC	C Sampl	e: L251	6068-05
Toluene	ND	0.00002	0.024	120		0.024	120	4	7-150	0		41
2-Butanone	ND	0.00005	0.032	64		0.034	68	6	0-140	6		30

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
4-Bromofluorobenzene	116	115	60-140
Fluorobenzene	82	84	60-140
Pentafluorobenzene	82	87	60-140

METALS

 Project Name:
 SPS TECHNOLOGIES

 Lab Number:
 L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

 Lab ID:
 L2516068-01
 Date Collected:
 03/19/25 11:15

 Client ID:
 SW1-031925
 Date Received:
 03/19/25

Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Chromium, Total	0.00031	J	mg/l	0.00100	0.00017	1	03/20/25 07:32	03/20/25 11:29	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00087	J	mg/l	0.00200	0.00055	1	03/20/25 07:32	03/20/25 11:29	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfie	eld Lab								
Hardness	232.7		mg/l	0.5400	NA	1	03/20/25 07:32	03/20/25 11:29	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/20/25 11:29	NA	107,-	
Dissolved Metals - N	/lansfield l	Lab									
Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	03/20/25 07:32	03/20/25 11:47	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0007	J	mg/l	0.0020	0.0006	1	03/20/25 07:32	03/20/25 11:47	EPA 3005A	3,200.8	NTB

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

 Lab ID:
 L2516068-02
 Date Collected:
 03/19/25 11:50

 Client ID:
 SW2-031925
 Date Received:
 03/19/25

Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansi	field Lab										
Chromium, Total	0.00029	J	mg/l	0.00100	0.00017	1	03/20/25 07:32	03/20/25 11:33	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00206		mg/l	0.00200	0.00055	1	03/20/25 07:32	03/20/25 11:33	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfie	eld Lab								
Hardness	266.9		mg/l	0.5400	NA	1	03/20/25 07:32	03/20/25 11:33	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/20/25 11:33	NA	107,-	
Dissolved Metals - N	/lansfield l	_ab									
Chromium, Dissolved	0.0002	J	mg/l	0.0010	0.0002	1	03/20/25 07:32	03/20/25 11:52	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0019	J	mg/l	0.0020	0.0006	1	03/20/25 07:32	03/20/25 11:52	EPA 3005A	3,200.8	NTB

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

 Lab ID:
 L2516068-03
 Date Collected:
 03/19/25 12:30

 Client ID:
 SW3-031925
 Date Received:
 03/19/25

 Sample Location:
 JENKINTOWN, PA
 Field Prep:
 Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansi	ield Lab										
Chromium, Total	0.00029	J	mg/l	0.00100	0.00017	1	03/20/25 07:32	03/20/25 11:38	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00100	J	mg/l	0.00200	0.00055	1	03/20/25 07:32	03/20/25 11:38	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfie	eld Lab								
Hardness	226.1		mg/l	0.5400	NA	1	03/20/25 07:32	03/20/25 11:38	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/20/25 11:38	NA	107,-	
Dissolved Metals - N	lansfield I	_ab									
Chromium, Dissolved	0.0002	J	mg/l	0.0010	0.0002	1	03/20/25 07:32	03/20/25 11:56	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0010	J	mg/l	0.0020	0.0006	1	03/20/25 07:32	03/20/25 11:56	EPA 3005A	3,200.8	NTB

L2516068

Project Name: SPS TECHNOLOGIES Lab Number:

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

 Lab ID:
 L2516068-04
 Date Collected:
 03/19/25 10:35

 Client ID:
 SW4-031925
 Date Received:
 03/19/25

Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Chromium, Total	0.00019	J	mg/l	0.00100	0.00017	1	03/20/25 07:32	03/20/25 11:42	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00168	J	mg/l	0.00200	0.00055	1	03/20/25 07:32	03/20/25 11:42	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfi	eld Lab								
Hardness	214.9		mg/l	0.5400	NA	1	03/20/25 07:32	03/20/25 11:42	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/20/25 11:42	NA	107,-	
Dissolved Metals - N	/lansfield	Lab									
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	03/20/25 07:32	03/20/25 12:01	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0017	J	mg/l	0.0020	0.0006	1	03/20/25 07:32	03/20/25 12:01	EPA 3005A	3,200.8	NTB

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

 Lab ID:
 L2516068-05
 Date Collected:
 03/19/25 09:35

 Client ID:
 SW5-031925
 Date Received:
 03/19/25

Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Chromium, Total	0.00870		mg/l	0.00100	0.00017	1	03/20/25 07:32	03/20/25 11:15	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00151	J	mg/l	0.00200	0.00055	1	03/20/25 07:32	03/20/25 11:15	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfie	eld Lab								
Hardness	175.0		mg/l	0.5400	NA	1	03/20/25 07:32	03/20/25 11:15	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/20/25 11:15	NA	107,-	
Dissolved Metals - N	/lansfield l	_ab									
Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	03/20/25 07:32	03/20/25 11:33	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.0014	J	mg/l	0.0020	0.0006	1	03/20/25 07:32	03/20/25 11:33	EPA 3005A	3,200.8	NTB

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

Lab ID:L2516068-06Date Collected:03/19/25 00:00Client ID:DUP-031925Date Received:03/19/25Sample Location:JENKINTOWN, PAField Prep:Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansi	ield Lab										
Chromium, Total	0.00027	J	mg/l	0.00100	0.00017	1	03/20/25 07:32	03/20/25 11:47	EPA 3005A	3,200.8	NTB
Nickel, Total	0.00100	J	mg/l	0.00200	0.00055	1	03/20/25 07:32	03/20/25 11:47	EPA 3005A	3,200.8	NTB
Total Hardness (by	calculation	n) - Mansfie	eld Lab								
Hardness	226.9		mg/l	0.5400	NA	1	03/20/25 07:32	03/20/25 11:47	EPA 3005A	3,200.8	NTB
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/20/25 11:47	NA	107,-	
Dissolved Metals - N	lansfield I	_ab									
Chromium, Dissolved	0.0002	J	mg/l	0.0010	0.0002	1	03/20/25 07:32	03/20/25 12:05	EPA 3005A	3,200.8	NTB
Nickel, Dissolved	0.001	J	mg/l	0.0020	0.0006	1	03/20/25 07:32	03/20/25 12:05	EPA 3005A	3,200.8	NTB

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number:

L2516068

Report Date:

03/21/25

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	ld Lab for sample(s):	01-06 E	Batch: WO	G204279	91-1				
Chromium, Total	ND	mg/l	0.00100	0.00017	1	03/20/25 07:32	03/20/25 11:06	3,200.8	NTB
Nickel, Total	ND	mg/l	0.00200	0.00055	5 1	03/20/25 07:32	03/20/25 11:06	3,200.8	NTB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness (by calc	ulation) - Mansfield L	ab for sa	ample(s):	01-06	Batch: W	G2042791-1			
Hardness	ND	mg/l	0.5400	NA	1	03/20/25 07:32	03/20/25 11:06	3,200.8	NTB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	ansfield Lab	for sample	e(s): 01-06	Batch	: WG20	042793-1				
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	03/20/25 07:32	03/20/25 11:24	3,200.8	NTB
Nickel, Dissolved	ND		mg/l	0.0020	0.0006	1	03/20/25 07:32	03/20/25 11:24	4 3,200.8	NTB

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number:

L2516068

03/21/25

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sam	ple(s): 01-06	Batch: W	G2042791-2					
Chromium, Total	96		-		85-115	-		
Nickel, Total	99		-		85-115	-		
Total Hardness (by calculation) - Mansfield La		sample(s)	: 01-06 Batch: V	/G2042791				
Hardness	96		-		85-115	-		
Dissolved Metals - Mansfield Lab Associated	sample(s): 01-	·06 Bato	ch: WG2042793-2					
Chromium, Dissolved	96		-		85-115	-		
Nickel, Dissolved	99		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number:

L2516068

Report Date:

03/21/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab As	ssociated sam	ple(s): 01-06	QC Bat	ch ID: WG204	2791-3	WG204279	1-4 QC Sam	ple: L2	516068-05	Clien	t ID: SV	V5-031925
Chromium, Total	0.00870	0.2	0.2077	99		0.2015	96		70-130	3		20
Nickel, Total	0.00151J	0.5	0.5334	107		0.5155	103		70-130	3		20
Total Hardness (by calculation) ID: SW5-031925	- Mansfield L	ab Associate	d sample(s): 01-06 QC	Batch	ID: WG2042	2791-3 WG20)42791-	4 QC Sam	ple: L2	2516068	-05 Client
Hardness	175.0	66.2	247.0	109		239.7	98		70-130	3		20
Dissolved Metals - Mansfield La 031925	ab Associated	sample(s): 0	1-06 QC	C Batch ID: WC	G204279	93-3 WG20	42793-4 QC	Sample	e: L2516068	3-05	Client ID): SW5-
Chromium, Dissolved	0.0003J	0.2	0.1946	97		0.3984	199	Q	70-130	69	Q	20
Nickel, Dissolved	0.0014J	0.5	0.5078	102		0.5245	105		70-130	3		20

INORGANICS & MISCELLANEOUS

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-01 Date Collected: 03/19/25 11:15

Client ID: SW1-031925 Date Received: 03/19/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab)								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 03:15	03/21/25 14:48	121,4500CN-CE	JRO
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/20/25 07:25	121,4500CN- E(M)	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/20/25 08:34	03/20/25 12:19	140,1664B	TPR
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/20/25 07:51	03/20/25 08:09	121,3500CR-B	DMO

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-02 Date Collected: 03/19/25 11:50

Client ID: SW2-031925 Date Received: 03/19/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ab								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 03:15	03/21/25 14:49	121,4500CN-CE	JRO
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/20/25 07:25	121,4500CN- E(M)	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/20/25 08:34	03/20/25 12:58	140,1664B	TPR
Chromium, Hexavalent	0.007	J	mg/l	0.010	0.003	1	03/20/25 07:51	03/20/25 08:10	121,3500CR-B	DMO

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-03 Date Collected: 03/19/25 12:30

Client ID: SW3-031925 Date Received: 03/19/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ab								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 03:15	03/21/25 14:50	121,4500CN-CE	JRO
Cyanide, Free	0.004	J	mg/l	0.010	0.003	1	-	03/20/25 07:25	121,4500CN-	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/20/25 08:34	03/20/25 12:57	E(M) 140,1664B	TPR
Chromium, Hexavalent	0.006	J	mg/l	0.010	0.003	1	03/20/25 07:51	03/20/25 08:11	121,3500CR-B	DMO

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-04 Date Collected: 03/19/25 10:35

Client ID: SW4-031925 Date Received: 03/19/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ab								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 03:15	03/21/25 14:51	121,4500CN-CE	JRO
Cyanide, Free	0.004	J	mg/l	0.010	0.003	1	-	03/20/25 07:25	121,4500CN- E(M)	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/20/25 08:34	03/20/25 13:01	140,1664B	TPR
Chromium, Hexavalent	0.005	J	mg/l	0.010	0.003	1	03/20/25 07:51	03/20/25 08:12	121,3500CR-B	DMO

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-05 Date Collected: 03/19/25 09:35

Client ID: SW5-031925 Date Received: 03/19/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ab								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 03:15	03/21/25 14:52	121,4500CN-CE	JRO
Cyanide, Free	0.004	J	mg/l	0.010	0.003	1	-	03/20/25 07:25	121,4500CN- E(M)	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/20/25 08:34	03/20/25 10:18	140,1664B	TPR
Chromium, Hexavalent	0.008	J	mg/l	0.010	0.003	1	03/20/25 07:51	03/20/25 08:13	121,3500CR-B	DMO

Project Name: SPS TECHNOLOGIES Lab Number: L2516068

Project Number: 658978 Report Date: 03/21/25

SAMPLE RESULTS

Lab ID: L2516068-06 Date Collected: 03/19/25 00:00

Client ID: DUP-031925 Date Received: 03/19/25 Sample Location: JENKINTOWN, PA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ab								
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/21/25 03:15	03/21/25 14:59	121,4500CN-CE	JRO
Cyanide, Free	0.004	J	mg/l	0.010	0.003	1	-	03/20/25 07:25	121,4500CN- E(M)	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/20/25 08:34	03/20/25 13:02	140,1664B	TPR
Chromium, Hexavalent	0.003	J	mg/l	0.010	0.003	1	03/20/25 07:51	03/20/25 08:16	121,3500CR-B	DMO

L2516068

Lab Number:

Project Name: SPS TECHNOLOGIES

Project Number: 658978 Report Date: 03/21/25

S

Method	Blank	Analys i	İS
Batch	Quality	Control	

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westk	oorough Lab for sam	nple(s): 01	-06 Ba	tch: WC	G2042822-	1			
Chromium, Hexavalent	ND	mg/l	0.010	0.003	1	03/20/25 07:51	03/20/25 08:07	121,3500CR-B	DMO
General Chemistry - Westh	oorough Lab for sam	ple(s): 01	-06 Ba	tch: WC	G2042825-	1			
Cyanide, Free	ND	mg/l	0.010	0.003	1	-	03/20/25 07:25	121,4500CN-E(N	I) KAF
General Chemistry - Westk	oorough Lab for sam	nple(s): 01	-06 Ba	tch: WC	G2042886-	1			
Oil & Grease, Hem-Grav	ND	mg/l	4.0	4.0	1	03/20/25 08:34	03/20/25 10:17	140,1664B	TPR
General Chemistry - Westk	oorough Lab for sam	ple(s): 01	-06 Ba	tch: WC	92043259-	1			
Cyanide, Total	ND	mg/l	0.005	0.001	1	03/21/25 03:15	03/21/25 14:45	121,4500CN-CE	JRO

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number:

L2516068

Report Date:

03/21/25

Parameter	LCS %Recovery Qual	LCSD %Recovery Q	%Recovery ual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-06	Batch: WG2042822-2	2			
Chromium, Hexavalent	102	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-06	Batch: WG2042825-2	2			
Cyanide, Free	99	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-06	Batch: WG2042886-2	2			
Oil & Grease, Hem-Grav	94	-	78-114	-		18
General Chemistry - Westborough Lab	Associated sample(s): 01-06	Batch: WG2043259-2	2			
Cyanide, Total	93	-	90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number:

L2516068

Report Date: 03/21/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD Q	RPD _{ual} Limits
General Chemistry - Westboro SW5-031925	ough Lab Asso	ciated samp	ole(s): 01-06	QC Batch II	D: WG20	042822-4	WG2042822-5	QC S	ample: L25 ²	16068-05	Client ID:
Chromium, Hexavalent	0.008J	0.1	0.106	106		0.105	105		85-115	1	20
General Chemistry - Westboro SW5-031925	ough Lab Asso	ciated samp	ole(s): 01-06	QC Batch II	D: WG20	042825-4	WG2042825-5	QC S	ample: L25 ²	16068-05	Client ID:
Cyanide, Free	0.004J	0.25	0.267	107		0.268	107		80-120	0	20
General Chemistry - Westboro SW5-031925	ough Lab Asso	ciated samp	ole(s): 01-06	QC Batch II	D: WG20	042886-4	WG2042886-5	QC S	ample: L25 ²	16068-05	Client ID:
Oil & Grease, Hem-Grav	ND	39.6	37	94		34	88		78-114	7	18
General Chemistry - Westboro SW5-031925	ough Lab Asso	ciated samp	ole(s): 01-06	QC Batch II	D: WG20	043259-3	WG2043259-4	QC S	ample: L25	16068-05	Client ID:
Cyanide, Total	ND	0.2	0.195	98		0.185	92		90-110	5	30

Lab Duplicate Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: 658978

L2516068 03/21/25 Report Date:

Lab Number:

Parameter	Native Samp	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sample	ple(s): 01-06	QC Batch ID:	WG2042822-3	QC Sample:	L2516068-05	Client ID:	SW5-031925
Chromium, Hexavalent	0.008J		0.008J	mg/l	NC		20
General Chemistry - Westborough Lab Associated sample	ple(s): 01-06	QC Batch ID:	WG2042825-3	QC Sample:	L2516068-05	Client ID:	SW5-031925
Cyanide, Free	0.004J		ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated sample	ple(s): 01-06	QC Batch ID:	WG2042886-3	QC Sample:	L2516068-05	Client ID:	SW5-031925
Oil & Grease, Hem-Grav	ND		ND	mg/l	NC		18
General Chemistry - Westborough Lab Associated sample	ple(s): 01-06	QC Batch ID:	WG2043259-5	QC Sample:	L2516068-05	Client ID:	SW5-031925
Cyanide, Total	ND		ND	mg/l	NC		30

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Lab Number: L2516068
Report Date: 03/21/25

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
Α	Absent
В	Absent
С	Absent
D	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2516068-01A	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-01B	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-01C	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-01D	Plastic 250ml HNO3 preserved	D	<2	<2	2.2	Υ	Absent		CR-2008S(180),NI-2008S(180)
L2516068-01E	Plastic 250ml HNO3 preserved	D	<2	<2	2.2	Y	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2516068-01F	Plastic 250ml NaOH preserved	D	>12	>12	2.2	Υ	Absent		TCN-4500(14)
L2516068-01G	Plastic 500ml unpreserved	D	7	7	2.2	Υ	Absent		HEXCR-3500(1),FCN(1)
L2516068-01H	Amber 1L HCI preserved	D	NA		2.2	Υ	Absent		OG-1664(28)
L2516068-01J	Amber 1L HCI preserved	D	NA		2.2	Υ	Absent		OG-1664(28)
L2516068-02A	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-02B	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-02C	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-02D	Plastic 250ml HNO3 preserved	D	<2	<2	2.2	Υ	Absent		CR-2008S(180),NI-2008S(180)
L2516068-02E	Plastic 250ml HNO3 preserved	D	<2	<2	2.2	Y	Absent		NI-2008T(180),HARDT-2008(180),CR-2008T(180)
L2516068-02F	Plastic 250ml NaOH preserved	D	>12	>12	2.2	Υ	Absent		TCN-4500(14)
L2516068-02G	Plastic 500ml unpreserved	D	7	7	2.2	Υ	Absent		HEXCR-3500(1),FCN(1)
L2516068-02H	Amber 1L HCI preserved	D	NA		2.2	Υ	Absent		OG-1664(28)
L2516068-02J	Amber 1L HCl preserved	D	NA		2.2	Υ	Absent		OG-1664(28)
L2516068-03A	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)

Lab Number: L2516068

Report Date: 03/21/25

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2516068-03B	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-03C	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-03D	Plastic 250ml HNO3 preserved	С	<2	<2	2.4	Υ	Absent		CR-2008S(180),NI-2008S(180)
L2516068-03E	Plastic 250ml HNO3 preserved	С	<2	<2	2.4	Υ	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2516068-03F	Plastic 250ml NaOH preserved	С	>12	>12	2.4	Υ	Absent		TCN-4500(14)
L2516068-03G	Plastic 500ml unpreserved	С	7	7	2.4	Υ	Absent		HEXCR-3500(1),FCN(1)
L2516068-03H	Amber 1L HCl preserved	С	NA		2.4	Υ	Absent		OG-1664(28)
L2516068-03J	Amber 1L HCl preserved	С	NA		2.4	Υ	Absent		OG-1664(28)
L2516068-04A	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-04B	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-04C	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-04D	Plastic 250ml HNO3 preserved	D	<2	<2	2.2	Υ	Absent		CR-2008S(180),NI-2008S(180)
L2516068-04E	Plastic 250ml HNO3 preserved	D	<2	<2	2.2	Υ	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2516068-04F	Plastic 250ml NaOH preserved	D	>12	>12	2.2	Υ	Absent		TCN-4500(14)
L2516068-04G	Plastic 500ml unpreserved	D	7	7	2.2	Υ	Absent		HEXCR-3500(1),FCN(1)
L2516068-04H	Amber 1L HCl preserved	D	NA		2.2	Υ	Absent		OG-1664(28)
L2516068-04J	Amber 1L HCI preserved	D	NA		2.2	Υ	Absent		OG-1664(28)
L2516068-05A	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-05A1	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-05A2	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-05B	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-05B1	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-05B2	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-05C	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-05C1	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-05C2	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-05D	Plastic 250ml HNO3 preserved	В	<2	<2	3.6	Υ	Absent		CR-2008S(180),NI-2008S(180)

Lab Number: L2516068

Report Date: 03/21/25

Project Name: SPS TECHNOLOGIES

Project Number: 658978

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2516068-05D1	Plastic 250ml HNO3 preserved	В	<2	<2	3.6	Υ	Absent		CR-2008S(180),NI-2008S(180)
L2516068-05D2	Plastic 250ml HNO3 preserved	В	<2	<2	3.6	Υ	Absent		CR-2008S(180),NI-2008S(180)
L2516068-05E	Plastic 250ml HNO3 preserved	В	<2	<2	3.6	Υ	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2516068-05E1	Plastic 250ml HNO3 preserved	В	<2	<2	3.6	Υ	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2516068-05E2	Plastic 250ml HNO3 preserved	В	<2	<2	3.6	Υ	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2516068-05F	Plastic 250ml NaOH preserved	В	>12	>12	3.6	Υ	Absent		TCN-4500(14)
L2516068-05F1	Plastic 250ml NaOH preserved	В	>12	>12	3.6	Υ	Absent		TCN-4500(14)
L2516068-05F2	Plastic 250ml NaOH preserved	В	>12	>12	3.6	Υ	Absent		TCN-4500(14)
L2516068-05G	Plastic 500ml unpreserved	В	7	7	3.6	Υ	Absent		HEXCR-3500(1),FCN(1)
L2516068-05G1	Plastic 500ml unpreserved	В	7	7	3.6	Υ	Absent		HEXCR-3500(1),FCN(1)
L2516068-05G2	Plastic 500ml unpreserved	В	7	7	3.6	Υ	Absent		HEXCR-3500(1),FCN(1)
L2516068-05H	Amber 1L HCl preserved	В	NA		3.6	Υ	Absent		OG-1664(28)
L2516068-05H1	Amber 1L HCl preserved	В	NA		3.6	Υ	Absent		OG-1664(28)
L2516068-05H2	Amber 1L HCl preserved	В	NA		3.6	Υ	Absent		OG-1664(28)
L2516068-05J	Amber 1L HCl preserved	В	NA		3.6	Υ	Absent		OG-1664(28)
L2516068-05J1	Amber 1L HCl preserved	В	NA		3.6	Υ	Absent		OG-1664(28)
L2516068-05J2	Amber 1L HCl preserved	В	NA		3.6	Υ	Absent		OG-1664(28)
L2516068-06A	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-06B	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-06C	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)
L2516068-06D	Plastic 250ml HNO3 preserved	С	<2	<2	2.4	Υ	Absent		CR-2008S(180),NI-2008S(180)
L2516068-06E	Plastic 250ml HNO3 preserved	С	<2	<2	2.4	Υ	Absent		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2516068-06F	Plastic 250ml NaOH preserved	С	>12	>12	2.4	Υ	Absent		TCN-4500(14)
L2516068-06G	Plastic 500ml unpreserved	С	7	7	2.4	Υ	Absent		HEXCR-3500(1),FCN(1)
L2516068-06H	Amber 1L HCl preserved	С	NA		2.4	Υ	Absent		OG-1664(28)
L2516068-06J	Amber 1L HCl preserved	С	NA		2.4	Υ	Absent		OG-1664(28)
L2516068-07A	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)

Lab Number: L2516068

Report Date: 03/21/25

Project Number: 658978 Rep

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2516068-07B	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-PPM(7)	

Project Name:

SPS TECHNOLOGIES

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic

peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

REFERENCES

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 107 Calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 1664,Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 27

Page 1 of 2

Published Date: 01/24/2025

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

MADEP-APH.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

Document Type: Form Pre-Qualtrax Document ID: 08-113

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 27

Published Date: 01/24/2025

Page 2 of 2

Certification IDs:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANAB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA Man		TO A STATE OF THE PARTY OF THE	CUSTODY PAGE 1 OF 1				Date Rec'd in Lab 3 20 25							AL PHA Joh#				TRC — PA — ER		
Westborough, MA Man		Project Information			Report Information Data Deliverables FAX EMAIL							les			Client		PO #: 228588	- 1		
	neffeld, MA .: 508-522-9300 X: 508-822-3288	Project Name: SPS Technologies Project Location: Jenkintown, PA				☐ ADEX ☐ Add'l Deliverables Regulatory Requirements/Report Limits														
Client Information						State/Fed Program PA								Criteria						
Client: TRC Environme	8																			
Address: 1617 John F	. Kennedy Blvd.	Project Manager: Julie Acton						1												Γ
Suite 510, Philadelphi	a, PA 19103	ALPHA Quote #:						_		_	_	_	_	_	_	_	_		NT.	L
Phone: 267-679-6728		Turn-Around Time				ANA	LYSI	S		-								SAMPLE HANDLING	O T	
Fax: 215-563-2339		☐ Standard ☐ Rush (ONLY IF PRE-APPROVED)							80									Filtration Done	A L	
Email: JActon@trccon	mpanies.com						(W	m	200-									□ Not Needed	a	
These samples have been	en Previously analyzed by Alpha	Due Date:	Time:	1-Day			N-E	N N	SM3500-CrB		E200.8							Lab to do Preservation	B	
Other Project Specific Requirements/Comments/Detection Limits: *Attorney-Client Privileged & Confidential* All VOAs in 1 Cooler ER Project P: SSOIVE & Met 9 Is Field Filter				Itered)	ase E1664B	de SM4500CN-E(M)	de SM4500CN-CE	Speciated Hex Chlome (ToTal Chromium E200.8	hromium E2	E200.8	Dissolved Nickel E200.8		E624.1	less E200.8		Lab to do (Please specify below)	T L E S	
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle	ection Time	Sample Matrix	Sampler's Initials	Oil and Grease	Free Cyanide	Total Cyanide	Speciated	ToTal Chro	Dissolved Chromium	Total Nickel E200.8	Dissolved I	MEK E624.1	Toluene E6	Total Hardness		Sample Specific		THE PERSON
16068-01 1	sw1-031925	3/19/25	11:15	sw	115	×	M	×			×	×	×						0	Г
	sw2-031925	3/19/25	11:50	sw	135		\boxtimes	\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			9	1
	sw3-031925	3/19/25	12:30	sw	115				\boxtimes			\boxtimes							9	1
04 8	SW4-031925	311925	10:35	sw	75			\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes			9	
	SW5-031925	3/19/25	09:35	sw	16		M	\boxtimes			\boxtimes	\boxtimes	\boxtimes	M	\boxtimes	\boxtimes		Perform MshsD	127	Y
	DUP-031925	3/19/25	00:00	SW	15			\boxtimes				\boxtimes	\boxtimes	\boxtimes		\boxtimes			9	
07 1	TRIP BLANK - 031925	3/17/25	_	W	_	片	님	片		님	片		님			片			1/2	4
					-	H	님	님	H	뉘	님	님	님	님	분	Η	H		1	1
					-	H	H	片	님	뉘	H	님	H	Η	Η	H	님		-	1
						A	P	P	p.	P	Р	P	Р							1
				ntainer Type Preservative	В	A	E	A	c	A	C	C	н	Н		-	Please print clearly, legit	bly		
		Relinquished By:			Date/Time							, / Date/Time				and completely. Sample not be logged in and turnaround time-clock wi				
FORMA NO: 01-01(I-NJ) (WV. 5-JANI-12)	Jages Soulies TRC				3/19/		500	Mon 1 Pace Southony Gree				3/19/20 /500 3/14/1920				start untif any ambiguities are resolved. All samples submitted are subject to Alpha's Payment Terms.				

Page 48 of 48