

SPS Technologies Abington PA March 7, 2025 Daily Surface Water and Outfall Sampling Results Report

SPS Technologies

2025-03-10

Table of Contents

1.	Executive Summary	2
2.	Introduction	3
3.	Site Background	3
4.	Tookany Creek Offsite Investigation	3
4.1	Sampling Locations	3
4.2	Surface Water and Outfall Sampling Field Methodology	3
4.3	Sample Analysis	4
4.4	Surface Water Sampling Daily Results	4
4.5	Outfall Sampling Daily Results	4
5.	Daily Quality Assurance/Quality Control and Management	5
5.1	Field Quality Assurance/Quality Control Requirements	5
5.2	Analytical QA/QC Samples	5
5.3	Data Evaluation	5
6.	References	5
TABLE	S	
Table 1	Daily Surface Water Sampling Results	
Table 2	Daily Outfall Sampling Results	
FIGURE	ES	
Figure 1	Surface Water and Outfall Sample Locations	
Figure 2	2 Downstream Surface Water Sample Locations	
Append	lices	
Append	ix A Daily Surface Water Sampling Log	
Append	ix B Data Validation Report	
Append	ix C Laboratory Analytical Report	

1. Executive Summary

WSP USA Inc. (WSP), on behalf of SPS Technologies Abington PA (SPS), collected five surface water samples and one outfall sample in accordance with SPS's Sampling Plan, which was submitted to the Philadelphia Water Department (PWD), the Pennsylvania Department of Environmental Protection (PADEP), and the United States Environmental Protection Agency (EPA). The samples were submitted to a Pennsylvania-certified analytical laboratory for analysis. The sample locations are shown in the attached **Figures 1** and **2** and the results of the analysis are shown below.

Surface Water Samples:

		Upstream Offsite SW Sample Location 1	Upstream Offsite SW Sample Location 2	SW Sample Location 3	High School Road Sample Location	Downstream SW Sample Location
Parameter	Units	Result	Result	Result	Result	Result
Toluene	mg/L	ND	ND	ND	ND	ND
2-Butanone (MEK)	mg/L	ND	ND	ND	ND	ND
Chromium, Trivalent	mg/L	ND	ND	ND	ND	ND
Chromium, Hexavalent	mg/L	ND	ND	ND	ND	ND
Total Cyanide	mg/L	ND	0.001	0.002	0.002	ND
Free Cyanide	mg/L	ND	ND	ND	ND	ND
Oil & Grease	mg/L	ND	ND	ND	ND	ND
Total Chromium	mg/L	0.00033	0.00024	0.00031	0.00025	0.00043
Total Nickel	mg/L	0.00161	0.00484	0.00232	0.00343	0.00239
Dissolved Chromium	mg/L	0.0003	0.0002	0.0003	0.0003	0.0003
Dissolved Nickel	mg/L	0.0011	0.0037	0.0016	0.0028	0.0018
Hardness	mg/L	236.5	271.0	228.7	212.7	159.2
рН	SU	8.15	8.01	7.63	7.39	5.90

Outfall Samples:

		Outfall 006
Parameter	Units	Result
Toluene	mg/L	ND
2-Butanone (MEK)	mg/L	ND
Chromium, Trivalent	mg/L	ND
Chromium, Hexavalent	mg/L	ND
Total Cyanide	mg/L	ND
Free Cyanide	mg/L	ND
Oil & Grease	mg/L	ND
Total Suspended Solids	mg/L	ND
Nitrate/Nitrite as Nitrogen	mg/L	4
Chemical Oxygen Demand	mg/L	13
Total Aluminum	mg/L	0.01970
Total Chromium	mg/L	0.00020
Total Copper	mg/L	0.00177
Total Iron	mg/L	0.1907
Total Lead	mg/L	ND
Total Nickel	mg/L	0.00198

Total Zinc	mg/L	0.01586
Dissolved Chromium	mg/L	0.0002
Dissolved Nickel	mg/L	0.0014
Hardness	mg/L	214.4
рН	SU	6.01

A detailed description of the sampling procedure, results, and data evaluation are included in this Report. The laboratory data validation reports and the complete laboratory analytical reports, including Quality Assurance/Quality Control (QA/QC) are attached to the Report.

2. Introduction

This Daily Surface Water and Outfall Sampling Results Report (Report) has been prepared by WSP USA Inc. (WSP) on behalf of SPS Technologies Abington PA (SPS), which operates the facility located at 301 Highland Ave, Jenkintown, Pennsylvania, 19046 (the Facility). The purpose of the Report is to provide off-site surface water and outfall sampling results collected in accordance with SPS's Sampling Plan, as prepared by WSP, which was submitted to the Philadelphia Water Department (PWD), the Pennsylvania Department of Environmental Protection (PADEP), and the United States Environmental Protection Agency (EPA) on February 21, 2025 and revised on February 25, 2025 (Sampling Plan). Refer to Sampling Plan **Figures 1** and **2** for sampling locations.

3. Site Background

SPS Technologies currently owns the Site. Operations at the Site consist of manufacturing bolts, nuts, screws, rivets, washers, furniture, and fixtures. Tookany Creek is located south of the SPS building and north of Paxson Ave.

4. Tookany Creek Offsite Investigation

4.1 Sampling Locations

The sampling locations displayed on **Figure 1** and **Figure 2** were selected based on discussions with PWD and PADEP and were identified in the Sampling Plan.

4.2 Surface Water and Outfall Sampling Field Methodology

The surface water and outfall sampling methodology was in accordance with the Sampling Plan.

The surface water and outfall field data collected for the surface water and outfall samples at each sampling location included the following:

- Water depth (for surface water samples only)
- Weather conditions
- Water velocity (if visibly flowing)
- Sample characteristics (clarity, appearance, color, odor, etc.)
- Water quality measurements (DO, pH, salinity, ORP, turbidity, conductivity, and temperature)
- Additional observations (e.g., wildlife sightings)

This data is documented on the daily surface water sampling forms attached in **Appendix A**. The in-field measurements of pH are provided on **Table 1** and **2**.

4.3 Sample Analysis

All samples were submitted to Pace Analytical in Westborough, Massachusetts (Certification No. 68-03671) and Pace Analytical in Mansfield, Massachusetts (Certification No. 68-02089), following chain-ofcustody protocols.

4.4 Surface Water Sampling Daily Results

In accordance with the Sampling Plan, surface water samples were analyzed for the following parameters.

- pH (in-field measurement)
- Oil & grease
- Free cyanide
- Total cyanide
- Total nickel
- Dissolved nickel
- Total chromium
- Dissolved chromium
- Hexavalent chromium (speciated)
- Methyl ethyl ketone (MEK)
- Toluene
- Total hardness

The validated daily analytical results from surface water sampling are presented in Table 1.

4.5 Outfall Sampling Daily Results

In accordance with the Sampling Plan and PADEP's comments, outfall samples were analyzed for the following parameters:

- pH (in-field measurement)
- Chemical Oxygen Demand
- Total Suspended Solids
- Nitrate-Nitrite as N
- Total aluminum
- Total copper
- Total iron
- Total lead
- Toluene
- Methyl ethyl ketone (MEK)
- Hexavalent chromium (speciated)
- Total cyanide
- Free cyanide
- Oil & grease
- Total chromium

- Total nickel
- Total zinc
- Dissolved chromium
- Dissolved nickel
- Hardness

The validated daily analytical results from outfall sampling are presented in Table 2.

5. Daily Quality Assurance/Quality Control and Management

5.1 Field Quality Assurance/Quality Control Requirements

Field personnel performed data quality control (QC) verification of field measurements in consultation with the Pennsylvania Department of Environmental Protection Sampling and Analysis Plan (PADEP, 2023). This process included reviewing calibration records and duplicate readings to ensure data accuracy. Field measurements were documented in notebooks or field information forms. pH readings are also summarized in **Table 1**.

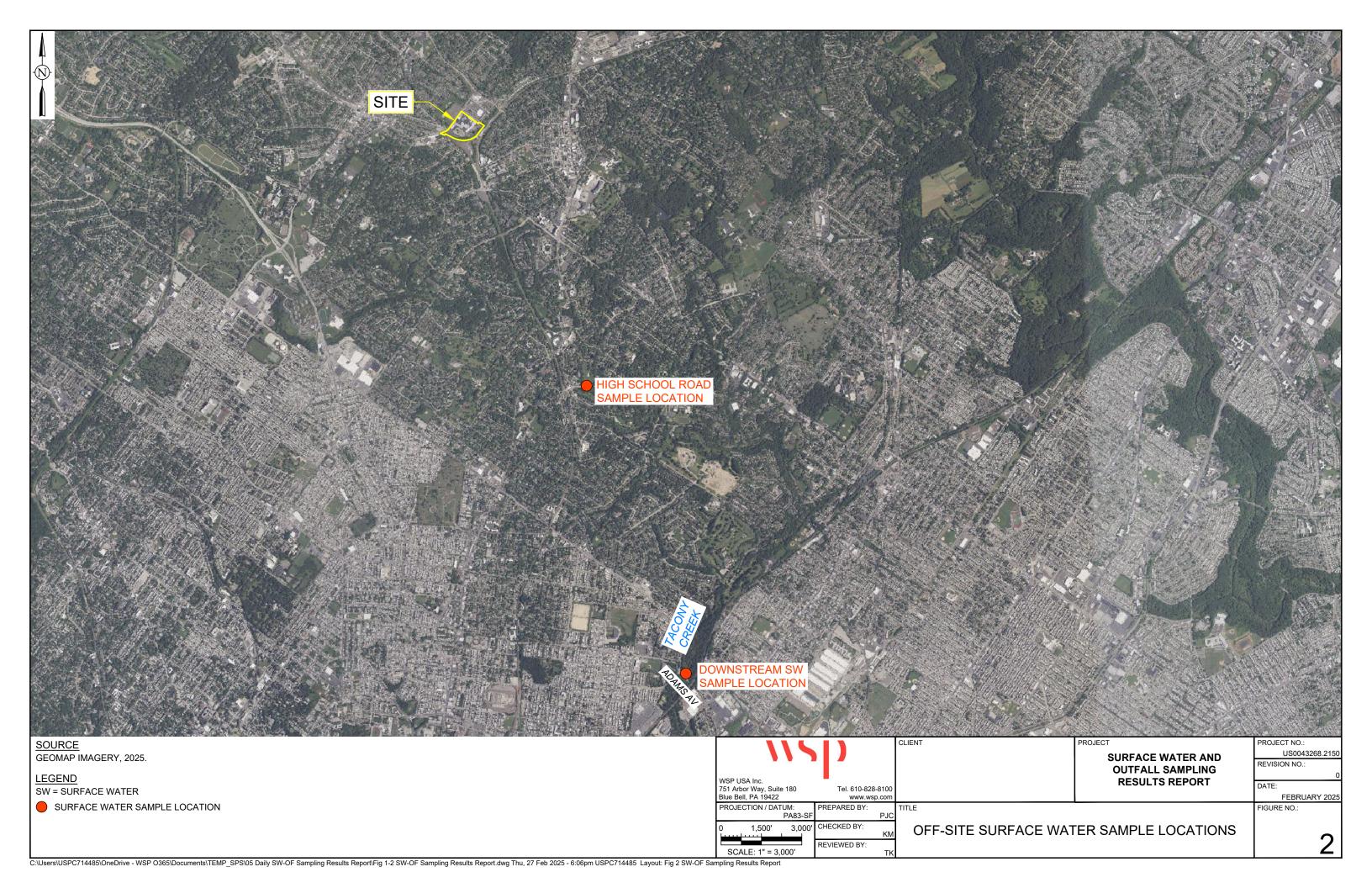
All hand equipment used during the sampling event was cleaned with Alconox and distilled water. Disposable sampling cups were used to collect the samples. Field personnel wore disposable nitrile sampling gloves. Sampling gloves were discarded after processing at each sample location and replaced before handling decontaminated equipment or work surfaces.

5.2 Analytical QA/QC Samples

All quality assurance/quality control (QA/QC), field duplicates (FD), and matrix spikes/matrix spike duplicates (MS/MSD) were collected in accordance with the Sampling Plan.

Trip blanks (TBs) accompanied each shipment of toluene and MEK samples at a rate of one per day. The following QA/QC samples were collected at a rate of 1 per 20 primary samples during each monitoring event: field duplicates (FD) and matrix spikes/matrix spike duplicates (MS/MSD). No field (rinsate) blanks were collected because single-use sample cups were used to collect the samples.

5.3 Data Evaluation


The reliability of the analytical data were evaluated to assess its suitability for use in the monitoring. In particular, the data's precision, accuracy, and sensitivity were evaluated based on field sampling documentation, adherence to sample holding times, and analysis of the QC samples (duplicates, spikes, and blanks). Data validation of the laboratory data was in accordance with the Sampling Plan. The data validation report is attached as **Appendix B**.

6. References

- 1. SPS Technologies, Sampling Plan. 25 Feb. 2025.
- 2. Pennsylvania Department of Environmental Protection. Water Quality Monitoring Protocols for Surface Waters. 2023.

FIGURES & TABLES & APPENDICES

Table 1Surface Water Analytical ResultsDaily Surface Water Sampling Results ReportSPS TechnologiesJenkintown, Pennsylvania

	Upstream Offsite SW Sample		Upstream Offsite SW Sample		SW Sample			High Scho	ol Road	Sample	Downstream SW Sample					
Sample I	ocation	Lo	cation 1		Lo	cation 2		Lo	ocation 3		L	ocation		L	ocation	
Field Sa	mple ID	SW	2_030725		SW1_030725		SW3_030725			SW4_030725			SW5_030725		5	
Lab Sa	mple ID	L25	513026-04		L2513026-05		L2513026-03			L2513026-02			L2513026-01		1	
Sampl	ng Date	3	/7/2025		3	/7/2025		3	/7/2025		3	/7/2025		3/7/2025		
	Matrix		Water	-		Water			Water	-		Water	_		Water	
Parameter	Units	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL
Volatile Organic Compounds																
Toluene	mg/L	ND		0.001	ND		0.001	ND		0.001	ND		0.001	ND		0.001
2-Butanone (MEK)	mg/L	ND		0.01	ND		0.01	ND		0.01	ND		0.01	ND		0.01
General Chemistry																
Chromium, Trivalent	mg/L	ND		0.01	ND		0.01	ND		0.01	ND		0.01	ND		0.01
Chromium, Hexavalent	mg/L	ND		0.01	ND		0.01	ND		0.01	ND		0.01	ND		0.01
Total Cyanide	mg/L	ND		0.005	0.001	J	0.005	0.002	J	0.005	0.002	J	0.005	ND		0.005
Free Cyanide	mg/L	ND		0.01	ND		0.01	ND		0.01	ND		0.01	ND		0.01
Oil & Grease	mg/L	ND		4.4	ND		4	ND		4	ND		4	ND		4.4
Total Metals																
Total Chromium	mg/L	0.00033	J	0.001	0.00024	J	0.001	0.00031	J	0.001	0.00025	J	0.001	0.00043	J	0.001
Total Nickel	mg/L	0.00161	J	0.002	0.00484		0.002	0.00232		0.002	0.00343		0.002	0.00239		0.002
Dissolved Metals																
Dissolved Chromium	mg/L	0.0003	J	0.001	0.0002	J	0.001	0.0003	J	0.001	0.0003	J	0.001	0.0003	J	0.001
Dissolved Nickel	mg/L	0.0011	J	0.002	0.0037		0.002	0.0016	J	0.002	0.0028		0.002	0.0018	J	0.002
Total Hardness					· · · · · · · · · · · · · · · · · · ·											
Hardness	mg/L	236.5		0.54	271		0.54	228.7		0.54	212.7		0.54	159.2		0.54
Field Parameters																
pH ¹	SU	8.15			8.01			7.63			7.39			5.90		

Notes:

1.) Field measurements for pH were performed by WSP field personnel prior to sample collection using a Horiba U-52. Field measurements were not validated.

Abbreviations:

mg/L: milligrams per liter ND: Non-Detect Q: Qualifier RL: Reporting Limit SU: Standard Units

Qualifiers:

J - Estimated Result

Table 2Outfall Analytical ResultsDaily Surface Water Sampling Results ReportSPS TechnologiesJenkintown, Pennsylvania

	Sample Location		utfall 006	
	Field Sample ID	OF00	06_030725	
	Lab Sample ID	L25	13027-01	
	Sampling Date	3/	/7/2025	
	Matrix		Water	
Parameter	Units	Result	Q	RL
Volatile Organic Compounds				
Toluene	mg/L	ND		0.001
2-Butanone (MEK)	mg/L	ND		0.01
General Chemistry				
Chromium, Trivalent	mg/L	ND		0.01
Chromium, Hexavalent	mg/L	ND		0.01
Total Cyanide	mg/L	ND		0.005
Free Cyanide	mg/L	ND		0.01
Oil & Grease	mg/L	ND		4
Total Suspended Solids	mg/L	ND		5
Nitrate/Nitrite as Nitrogen	mg/L	4		0.1
Chemical Oxygen Demand	mg/L	13	J	20
Total Metals				
Total Aluminum	mg/L	0.0197		0.01
Total Chromium	mg/L	0.0002	J	0.001
Total Copper	mg/L	0.00177		0.001
Total Iron	mg/L	0.1907		0.05
Total Lead	mg/L	ND		0.001
Total Nickel	mg/L	0.00198	J	0.002
Total Zinc	mg/L	0.01586		0.005
Dissolved Metals				
Dissolved Chromium	mg/L	0.0002	J	0.001
Dissolved Nickel	mg/L	0.0014	J	0.002
Total Hardness				
Hardness	mg/L	214.4		0.54
Field Parameters				
pH ¹	SU	6.01		

Notes:

1.) Field measurements for pH were performed by WSP field personnel prior to sample collection using a Horiba U-52. Field measurements were not validated.

Abbreviations:

mg/L: milligrams per liter ND: Non-Detect Q: Qualifier RL: Reporting Limit SU: Standard Units

Qualifiers:

J - Estimated Result

APPENDIX A – DAILY SURFACE WATER AND OUTFALL SAMPLING LOGS

SURFACE WATER/OUTFALL SAMPLE FIELD INFORMATION FORM

Citer	SPS						1	Addition	al Notes:				
Site: Location:	Abinaton PA												
Project Number:	1320-13262	2,2150			-								
Meter/Type/Serial #	Horiba U-52 #	S/N:	SVSP	STG									
Meter Calibrated @	: 7:45				(1)								
Flow Meter	FH950 Meter #	S/N:	1836	110041		1(0))	7125.51	0.410	30725	010	25 3/71	15	
Sampling Date/Time	e: 317125, 51		725 (lesi no	201100	175 G	11:25 3	17175	5/2) -	03072	5012:5	0 317	125
Sampler(s):	JEI, EMR, R		Ladi		12-0-21	0725 18	5 13:20	17171	15				
Sampling Device:	Jujioriti boji	, Dipper		and the same of the local division of the lo	NY 030			ider .	563_0	3017.	S (ha	r No	odci
Sample Characteris		735 47	LE DE C		v2-0				odor Si	N1-0-	30272 .	leci)	Jo odci
Analytical Parameter	215.					9-1-2-			,				
Weather Conditions	: 044 J	707			1								
											T]
STATION /	STATION			TOTAL	SAMPLE	WATER				×			
SAMPLE	DESCRIPTION	DATE	TIME	DEPTH	DEPTH	TEMP	SALINITY	pН	COND	ORP	TURBIDITY	DO	VELOCITY
SAMITLE	(stream/lake/river)	mm/dd/yy	hr:min	inches		Celsius	ppt	SU	mS/cm	mV	NTU	mg/L	ft/sec
		03/07/25	10:00	16.5	8.25	5.91	0.3	5.90	0.700	+170	0.0	9.66	().6)
SW5-030725	Dreek mple Characteristics:		JU 6		0.5	2111	$\mathbf{\nabla}$	10 10		l		-	
Sai	T	Ular	5 22	1060	1		T	T			T		
SW4-030725	creek	03/07/25	10:25	72	36	8.66	4.0	7.39	0.821	4101	0.0	8,63	1.98
Swg-USCFJD Sar	mple Characteristics:	1	1	- 1.		0.00		I		1	1		
		1 01211				385		210	() 7:2-7	1:77	6	1, 27	0 4 7
SW3-030725	Creek		11:35	258	14	2:28	0,4	7,63	0.737	+173	0.0	11.27	0.53
Sar	mple Characteristics:	Char	3 Ch	cdo									
5402-030725	Creek	03/07/25	12:50	8	4	10.33	0.2	215	0.715	+1589	0.0	11. 39	0.33
Sar	mple Characteristics:	Char	Nr	icho :									
	T			T	g	10000	0.5	8.01	0.979	10.0		11. 12	1.2.
SW1-030725	creek	03/07/25	13:20	18	7	10.25	C° D	201	0.119	+J03	0.0	8.71	1.21
Sar	mple Characteristics:	(1201	Z	c ode	ſ								
	Ι	[1		1	1			T			+
							1	1	+			+	+
							1			1		+	
								1		1		+	
0	\sim												
16								-1					
A 111	$\langle \rangle$	2	\frown										
(/ 4	$\langle \rangle$											2	1151
	\sim				Pa	ae 1 of 1							1 1

a a state of his states

(

SURFACE WATER/OUTFALL SAMPLE FIELD INFORMATION FORM

Site	395						_	Additi	onal Notes	6:			
Location:	Abinton				-	-	_						
Project Number:	N20093268.	2150					_						
Meter/Type/Serial #:	Horiba U-52 #	S/N:	3051	2516									
Meter Calibrated @:													
Flow Meter	FH950 Meter #	S/N:	1826	4100 419	54								
Sampling Date/Time	317125,	OFOCU	. 630	725 15	01:10	317125	-						
Sampler(s):	JUT, RIM,	ENR			_								
Sampling Device:	Pipet Dypp	a fiel	2										
Sample Characteris	tics: CFECE	3 725	317125	Clear	no oduc								
Analytical Paramete													
										252			
Weather Conditions	: Ulage 3!	SOF			1								
					-								
STATION /	STATION			TOTAL	SAMPLE	WATER							
SAMPLE	DESCRIPTION	DATE	TIME	DEPTH	DEPTH	TEMP	SALINITY	pH	COND	ORP	TURBIDITY	DO	VELOCITY
Shiwir LL	(stream/lake/river)	mm/dd/yy	hr:min	inches		Celsius	ppt	SU	mS/cm	mV	NTU	mg/L	ft/sec
CF006-03	SCT25 Crach	312125	9:10			6.15	0.4	6.01	0:339	+716	(O, O)	9.63	0.85
Sa	mple Characteristics:	Checi	No	oder									
		1						T	T				
Sa	mple Characteristics:				•								
	1	1						1					
Sa	mple Characteristics:												
Sa	mple Characteristics:												
Sar	mple Characteristics:												
									1				
1													
	1												

Domin was to to the

Page 1 of 1

\\SD

APPENDIX B – DATA VALIDATION REPORT

Pro	oject Name: SPS Technologies		-		nber/Phase/Task: US0043268.2150-US- Support. Task 01
Da Ch	viewing Company: WSP USA ta Evaluator: Candace Cocca ecked by: Julie Lehrman boratory: Pace Analytical LLC	l	Data Revie	Evalua ew Dat	nager: Tovah Karl ation Date: March 8, 2025 e: March 10, 2025 L2513026
Ма	trix: ⊠ Aqueous □ Soil □ Sediment	□ Was	te	□ Air	□ Other:
An	alytical Methods: See Table B-1				
Sa	mple Information: See Table B-1				
Wo	ork Plan or QAPP: SPS Technologies Abington F	PA Surf	ace \	Nater a	and Outfall Sampling Plan (WSP, 2025)
	ta Validation Guidance:				
) for Or	aoni		rfund Mothods Data Roview (New 2020)
	USEPA National Functional Guidelines (NFG	•	-	•	· · · · ·
	USEPA NFG for Inorganic Superfund Method	ds Data	Rev	iew (No	ov. 2020)
	OC and Sample Receipt	YES	_	NA	COMMENT
a)	· ·	\boxtimes			
b)	COC documents release of custody (signed and dated)?	\boxtimes			
c)	Field QC types provided (note types)?	\boxtimes			ТВ
d)	Did the cooler contents match the COC?	\boxtimes			
e)	Were samples received in good condition?	\boxtimes			
f)	Were cooler temperatures within control limits?	\boxtimes			
Da	ta Package Information	YES	NO	NA	COMMENT
a)	Laboratory name and location documented?	\boxtimes			
b)	All samples on COC reported in data package?	\boxtimes			
c)	Requested analytical methods used?	\boxtimes			
d)	Requested sample preparation methods used?	\boxtimes			
e)	Requested analyte list reported?	\boxtimes			
f)	Requested units reported?	\boxtimes			
g)	Did the laboratory define the qualifiers used?	\boxtimes			
h)	Data package contains all information necessary to complete the data quality review?	y 🛛			
An	alytical Assessment	YES	NO	NA	COMMENT
a)	Solid samples reported on a dry-weight basis?			\boxtimes	
b)	Were solid samples percent moisture criteria acceptable?			\boxtimes	

 \boxtimes

 \boxtimes

wsp

An	alytical Assessment	YES	NO	NA	COMMENT
	Were detected concentrations above the calibration range reported by the laboratory?		\boxtimes		
f)	Did the laboratory satisfy the requested sensitivity requirements?	\boxtimes			
Lal	poratory Case Narrative	YES	NO	NA	COMMENT
a)	Do the laboratory narrative or laboratory qualifiers indicate deficiencies?		\boxtimes		
b)	Were all deficiencies noted in the laboratory qualifiers or narrative?	\boxtimes			
Sa	mple Preservation and Holding Time	YES	NO	NA	COMMENT
a)	Were samples properly preserved?	\boxtimes			
b)	Were holding times met for sample preparation?	\boxtimes			
c)	Were holding times met for sample analysis?	\boxtimes			
Bla	inks	YES	NO	NA	COMMENTS
a)	Were blanks analyzed at the appropriate frequency?	\boxtimes			
b)	Were any analytes detected in the associated preparation/method blank?		\boxtimes		
c)	Were any analytes detected in the associated trip blanks?		\boxtimes		
d)	Were any analytes detected in the associated field or equipment/rinsate blanks?			\boxtimes	
e)	Were any analytes detected in the associated storage blanks?			\boxtimes	
	rrogates or Deuterated Monitoring mpounds	YES	NO	NA	COMMENTS
	Were the correct surrogate compounds added to each sample?	\boxtimes			
b)	Were surrogate recoveries within control limits?	\boxtimes			
c)	If not, were samples analyzed at dilution factors of 20x or greater?			\boxtimes	
LC	S/LCSD	YES	NO	NA	COMMENTS
a)	Were LCS/LCSD reported at the appropriate frequency?	\boxtimes			
b)	Were proper analytes included in the LCS/LCSD?	\boxtimes			
c)	Were LCS/LCSD recoveries within control limits?	\boxtimes			
d)	Were RPD values within control limits (if LCSD was analyzed)?			\boxtimes	
MS	/MSDs	YES	NO	NA	COMMENTS
a)	Were project-specific MS (and MSD) reported?	\boxtimes			SW5_030725 (total metals, total cyanide only); SW2_030725 (hex chrome only); SW4_030725 (oil & grease only)

MS	S/MSDs	YES	NO	NA	COMMENTS
b)	Were proper analytes reported in the MS/MSD?	\boxtimes			
c)	Were project-specific MS/MSD recoveries within control limits?	\boxtimes			
d)	If not, were sample concentrations greater than 4x the spiking concentration?			\boxtimes	
e)	Was the RPD or absolute difference within control limits (if project-specific MSD analyzed)?			\boxtimes	
f)	Were project-specific post-digestion spikes analyzed?			\boxtimes	
g)	Were project-specific post-digestion spike recoveries within control limits?			\boxtimes	
Du	plicates	YES	NO	NA	COMMENTS
a)	Were project-specific laboratory duplicates reported?	\boxtimes			SW5_030725 (total metals, total cyanide only); SW2_030725 (hex chrome only); SW4_030725 (oil & grease only)
b)	Was laboratory duplicate RPD or absolute difference criteria acceptable?	\boxtimes			
c)	Were field duplicates reported?			\boxtimes	
d)	Was field duplicate RPD or absolute difference criteria acceptable?			\boxtimes	
ICI	P Serial Dilution (SD)	YES	NO	NA	COMMENTS
a)	Was project-specific ICP SD data provided?			\boxtimes	
b)	Were project-specific ICP SD within acceptable criteria?			\boxtimes	
Ov	erall Evaluation	YES	NO	NA	COMMENTS
a)	Were there any other technical problems not previously addressed?		\boxtimes		
b)	Were data acceptable and usable, except where noted?	\boxtimes			

Comments/Notes:

The reliability of the analytical data were evaluated to assess its suitability for use. In particular, a Stage 2A data validation was performed, which evaluates the data's precision, accuracy, and sensitivity based on adherence to sample holding times and analysis of the QC samples (duplicates, spikes, and blanks). Where appropriate, data qualifiers were applied following USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (Nov. 2020) and USEPA NFG for Inorganic Superfund Methods Data Review (Nov. 2020), as applicable to the analytical methods used by the laboratory. Based on the data review, the data was deemed suitable for project decision making as reported by the laboratory.

Data Qualification: No qualifications

					Analyses/Parameters									
						MEK and Toluene	Oil and Grease	Total Metals	Dissolved Metals	Total Hardness	Free Cyanide	Total Cyanide	Trivalent Chromium	Hexavalent Chromium
Laboratory			Lab		Collection						SM 4500CN-	4500CN-		3500CR-
Job	Field Identification	Matrix	Identification	QC Samples	Date	E624.1	E1664B	200.8	200.8	200.8	E(M)	CE	SM 3500	В
L2513026	SW5_030725	WS	L2513026-01		3/7/2025	Х	Х	Х	Х	Х	X	Х	Х	Х
L2513026	SW4_030725	WS	L2513026-02		3/7/2025	Х	Х	Х	X	Х	Х	Х	Х	Х
L2513026	SW3_030725	WS	L2513026-03		3/7/2025	Х	Х	Х	X	Х	Х	Х	Х	Х
L2513026	SW2_030725	WS	L2513026-04		3/7/2025	Х	Х	Х	X	Х	Х	Х	Х	Х
L2513026	SW1_030725	WS	L2513026-05		3/7/2025	Х	Х	Х	X	Х	X	Х	Х	Х
L2513026	TBSW_030725	WQ	L2513026-06	TB	3/7/2025	Х						-		

Notes:

1) Metal analyses were performed by Pace Analytical Mansfield Lab, all other parameters were performed at Pace Analytical Westborough Lab.

2) Total Metals include:chromium and nickel

3) Dissolved Metals include:chromium and nickel

Abbreviations:

MEK: methyl ethyl ketone (2-butanone) MS/MSD: Matrix Spike/Matrix Spike Duplicate QC: Quality Control SM: Standard Methods TB: Trip Blank WS: Surface Water WQ: Quality Control Water

Table B-2 Qualifier Summary Table

Laboratory Job	Sample Name	Analyte	New Result	New MDL	New RL	Qualifier	Reason
L2513026			N	o qualificatio	ns require	d	
L2513026	All samples						Laboratory applied U-qualifiers indicating non-detect results and J-qualifiers indicating results below the reporting limit are retained unless other qualifications are indicated in this table. All other laboratory qualifiers are removed.

Abbreviations:

Qualifiers:

MDL: Method Detection Limit RL: Reporting Limit RPD: Relative Percent Difference SDG: Sample Delivery Group

Pro	oject Name: SPS Technologies		-		nber/Phase/Task: US0043268.2150-US- Support. Task 01				
Da Ch	viewing Company: WSP USA ta Evaluator: Candace Cocca ecked by: Julie Lehrman boratory: Pace Analytical LLC		Project Manager: Tovah Karl Data Evaluation Date: March 8, 2025 Review Date: March 10, 2025 Lab SDG #: L2513027						
Ма	trix: 🛛 Aqueous 🛛 Soil 🛛 Sec	liment 🛛 Wa	ste	□ Air	□ Other:				
An	alytical Methods: See Table B-1								
Sa	mple Information: See Table B-1								
Wo	ork Plan or QAPP: SPS Technologies	Abington PA Sur	face	Water a	nd Outfall Sampling Plan (WSP, 2025)				
	ta Validation Guidance:	Ū							
		ines (NEG) for ()raani	ic Super	fund Methods Data Review (Nov. 2020)				
		. ,	•						
	USEPA NFG for Inorganic Superfu	nd Methods Dat	a Rev	view (INC	ov. 2020)				
	OC and Sample Receipt COC complete and correct?			NA	COMMENT				
• •		\boxtimes							
b)	COC documents release of custody (signed and dated)?	\boxtimes							
c)	Field QC types provided (note types)?				ТВ				
d)	Did the cooler contents match the CO	C? 🛛							
e)	Were samples received in good condi	tion?							
f)	Were cooler temperatures within cont	rol limits? ⊠							
Da	ta Package Information	YE	s no	NA	COMMENT				
a)		ented? ⊠							
b)	All samples on COC reported in data	backage? 🛛 🖂							
c)	Requested analytical methods used?	\boxtimes							
d)	Requested sample preparation metho	ds used? 🛛 🖂							
e)	Requested analyte list reported?	\boxtimes							
f)	Requested units reported?	\boxtimes							
g)	Did the laboratory define the qualifiers	sused? ⊠							
h)	Data package contains all information to complete the data quality review?	necessary 🛛							
An	alytical Assessment	YES	S NO	NA	COMMENT				
a)	Solid samples reported on a dry-weig	nt basis? 🛛 🗌		\boxtimes					
b)	Were solid samples percent moisture acceptable?	criteria 🛛		\boxtimes					

 \boxtimes

 \boxtimes

d) Were detected concentrations less than the QL qualified by the laboratory?

Δn	alytical Assessment	YES	NO	NΔ	COMMENT
e)	Were detected concentrations above the calibration range reported by the laboratory?			1073	
f)	Did the laboratory satisfy the requested sensitivity requirements?	\boxtimes			
La	poratory Case Narrative	YES	NO	NA	COMMENT
a)	Do the laboratory narrative or laboratory qualifiers indicate deficiencies?		\boxtimes		
b)	Were all deficiencies noted in the laboratory qualifiers or narrative?	\boxtimes			
Sa	mple Preservation and Holding Time	YES	NO	NA	COMMENT
a)	Were samples properly preserved?	\boxtimes			
b)	Were holding times met for sample preparation?	\boxtimes			
c)	Were holding times met for sample analysis?	\boxtimes			
Bla	inks	YES	S NO	NA	COMMENTS
a)	Were blanks analyzed at the appropriate frequency?	\boxtimes			
b)	Were any analytes detected in the associated preparation/method blank?		\boxtimes		
c)	Were any analytes detected in the associated trip blanks?			\boxtimes	
d)	Were any analytes detected in the associated field or equipment/rinsate blanks?			\boxtimes	
e)	Were any analytes detected in the associated storage blanks?			\boxtimes	
	rrogates or Deuterated Monitoring mpounds	YES	NO	NA	COMMENTS
a)	Were the correct surrogate compounds added to each sample?	\boxtimes			
b)	Were surrogate recoveries within control limits?	\boxtimes			
c)	If not, were samples analyzed at dilution factors of 20x or greater?			\boxtimes	
LC	S/LCSD	YES	NO	NA	COMMENTS
a)	Were LCS/LCSD reported at the appropriate frequency?	\boxtimes			
b)	Were proper analytes included in the LCS/LCSD?	\boxtimes			
c)	Were LCS/LCSD recoveries within control limits?	\boxtimes			
d)	Were RPD values within control limits (if LCSD was analyzed)?			\boxtimes	
MS	/MSDs	YES	NO	NA	COMMENTS
a)	Were project-specific MS (and MSD) reported?	\boxtimes			OF006_030725 (free cyanide & COD only)
b)	Were proper analytes reported in the MS/MSD?	\square			

MS	S/MSDs	YES	NO	NA	COMMENTS
c)	Were project-specific MS/MSD recoveries within control limits?	\boxtimes			
d)	If not, were sample concentrations greater than 4x the spiking concentration?			\boxtimes	
e)	Was the RPD or absolute difference within control limits (if project-specific MSD analyzed)?			\boxtimes	
f)	Were project-specific post-digestion spikes analyzed?			\boxtimes	
g)	Were project-specific post-digestion spike recoveries within control limits?			\boxtimes	
Du	iplicates	YES	NO	NA	COMMENTS
a)	Were project-specific laboratory duplicates reported?	\boxtimes			OF006_030725 (free cyanide & COD only)
b)	Was laboratory duplicate RPD or absolute difference criteria acceptable?	\boxtimes			
c)	Were field duplicates reported?			\boxtimes	
d)	Was field duplicate RPD or absolute difference criteria acceptable?			\boxtimes	
IC	P Serial Dilution (SD)	YES	NO	NA	COMMENTS
a)	Was project-specific ICP SD data provided?			\boxtimes	
b)	Were project-specific ICP SD within acceptable criteria?			\boxtimes	
Ov	verall Evaluation	YES	NO	NA	COMMENTS
a)	Were there any other technical problems not previously addressed?		\boxtimes		
b)	Were data acceptable and usable, except where noted?	\boxtimes			

Comments/Notes:

The reliability of the analytical data was evaluated to assess its suitability for use. In particular, a Stage 2A data validation was performed, which evaluates the data's precision, accuracy, and sensitivity based on adherence to sample holding times and analysis of the QC samples (duplicates, spikes, and blanks). Where appropriate, data qualifiers were applied following USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (Nov. 2020) and USEPA NFG for Inorganic Superfund Methods Data Review (Nov. 2020), as applicable to the analytical methods used by the laboratory. Based on the data review, the data was deemed suitable for project decision making as reported by the laboratory.

Data Qualification: No qualifications

									A	nalyses/	Parame	ters					
						MEK and Toluene	Chemical Oxygen Demand	Total Suspended Solids	Nitrate-Nitrite as N	Oil and Grease	Total Metals	Dissolved Metals	Total Hardness	Free Cyanide	Total Cyanide	Trivalent Chromium	Hexavalent Chromium
Laboratory			Lab		Collection			SM						4500CN-	4500CN-	SM	3500CR-
Job	Field Identification	Matrix	Identification	QC Samples	Date	E624.1	E410.4	2540D	E353.2	E1664B	200.8	200.8	200.8	E(M)	CE	3500	В
L2513027	OF006_030725	WS	L2513027-01		3/7/2025	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
L2513027	TBOF_030725	WQ	L2513027-02	TB	3/7/2025	X											

Notes:

1) Metal analyses were performed by Pace Analytical Mansfield Lab, all other parameters were performed at Pace Analytical Westborough Lab.

2) Total Metals include: aluminum, copper, chromium, iron, nickel, and zinc

3) Dissovled Metals include: chromium and nickel

Abbreviations:

MEK: methyl ethyl ketone (2-butanone) MS/MSD: Matrix Spike/Matrix Spike Duplicate QC: Quality Control SM: Standard Methods TB: Trip Blank WS: Surface Water WQ: Quality Control Water

Table B-2 Qualifier Summary Table

Laboratory Job	Sample Name	Analyte	New Result	New MDL	New RL	Qualifier	Reason
L2513027			N	o qualificatio	ns require	d	
L2513027	All samples						Laboratory applied U-qualifiers indicating non-detect results and J-qualifiers indicating results below the reporting limit are retained unless other qualifications are indicated in this table. All other laboratory qualifiers are removed.

Abbreviations:

Qualifiers:

MDL: Method Detection Limit RL: Reporting Limit RPD: Relative Percent Difference SDG: Sample Delivery Group **APPENDIX C – LABORATORY ANALYTICAL REPORTS**

ANALYTICAL REPORT

Lab Number:	L2513026
Client:	WSP USA Inc.
	401 Route 73 North
	Suite 205
	Marlton, NJ 08053
ATTN:	Stacy Mason
Phone:	(856) 793-2005
Project Name:	SPS TECHNOLOGIES
Project Number:	US0043268.2150
Report Date:	03/09/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

ace

Serial_No:03092521:02

Project Name:SPS TECHNOLOGIESProject Number:US0043268.2150

 Lab Number:
 L2513026

 Report Date:
 03/09/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2513026-01	SW5_030725	WATER	JENKINTOWN, PA	03/07/25 10:00	03/07/25
L2513026-02	SW4_030725	WATER	JENKINTOWN, PA	03/07/25 10:25	03/07/25
L2513026-03	SW3_030725	WATER	JENKINTOWN, PA	03/07/25 11:35	03/07/25
L2513026-04	SW2_030725	WATER	JENKINTOWN, PA	03/07/25 12:50	03/07/25
L2513026-05	SW1_030725	WATER	JENKINTOWN, PA	03/07/25 13:20	03/07/25
L2513026-06	TBSW_030725	WATER	JENKINTOWN, PA	03/07/25 00:00	03/07/25

Project Name: SPS TECHNOLOGIES Project Number: US0043268.2150 Lab Number: L2513026 Report Date: 03/09/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: SPS TECHNOLOGIES Project Number: US0043268.2150
 Lab Number:
 L2513026

 Report Date:
 03/09/25

Case Narrative (continued)

Report Submission

March 09, 2025: This final report includes the results of all requested analyses.

March 08, 2025: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Cattlin Wallen Caitlin Walukevich

Title: Technical Director/Representative

Date: 03/09/25

, ace

ORGANICS

VOLATILES

			Serial_No	p:03092521:02
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2513026
Project Number:	US0043268.2150		Report Date:	03/09/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2513026-01 SW5_030725 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/07/25 10:00 03/07/25 Not Specified
Sample Depth: Matrix:	Water			
Analytical Method: Analytical Date: Analyst:	128,624.1 03/08/25 11:33 JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifie		ptance iteria
Pentafluorobenzene			83		6	60-140
Fluorobenzene			72		6	60-140
4-Bromofluorobenzene			110		6	60-140

			Serial_No	0:03092521:02
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2513026
Project Number:	US0043268.2150		Report Date:	03/09/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2513026-02 SW4_030725 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/07/25 10:25 03/07/25 Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method: Analytical Date: Analyst:	128,624.1 03/08/25 10:58 JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			79		6	60-140
Fluorobenzene			75		6	60-140
4-Bromofluorobenzene			114		6	60-140

			Serial_No	0:03092521:02
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2513026
Project Number:	US0043268.2150		Report Date:	03/09/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2513026-03 SW3_030725 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/07/25 11:35 03/07/25 Not Specified
Sample Depth:				
Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/08/25 10:24 JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			80		6	60-140
Fluorobenzene			73		6	60-140
4-Bromofluorobenzene			118		e	60-140

			Serial_No	0:03092521:02
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2513026
Project Number:	US0043268.2150		Report Date:	03/09/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2513026-04 SW2_030725 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/07/25 12:50 03/07/25 Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method: Analytical Date: Analyst:	128,624.1 03/08/25 09:51 JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier	Acceptance Qualifier Criteria	
Pentafluorobenzene			86		6	60-140
Fluorobenzene			72		6	60-140
4-Bromofluorobenzene			104		6	60-140

			Serial_No	0:03092521:02
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2513026
Project Number:	US0043268.2150		Report Date:	03/09/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2513026-05 SW1_030725 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/07/25 13:20 03/07/25 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/08/25 09:17 JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifie		ptance iteria
Pentafluorobenzene			84		6	60-140
Fluorobenzene			74		6	60-140
4-Bromofluorobenzene			112		6	60-140

			Serial_N	o:03092521:02
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2513026
Project Number:	US0043268.2150		Report Date:	03/09/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2513026-06 TBSW_030725 JENKINTOWN, PA		Date Collected: Date Received: Field Prep:	03/07/25 00:00 03/07/25 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 03/08/25 08:44 JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			84		6	60-140
Fluorobenzene			74		6	0-140
4-Bromofluorobenzene			113		e	60-140

Pace

 Project Name:
 SPS TECHNOLOGIES
 Lab Number:
 L2513026

 Project Number:
 US0043268.2150
 Report Date:
 03/09/25

Method Blank Analysis Batch Quality Control

Analytical Method:128,624.1Analytical Date:03/08/25 07:36Analyst:JKH

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS	· Westborough Lab	for sample(s): 01-0	06 Batch:	WG2038128-4
Toluene	ND	mg/l	0.0010	0.00031
2-Butanone	ND	mg/l	0.010	0.0010

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
Pentafluorobenzene	92	60-140
Fluorobenzene	78	60-140
4-Bromofluorobenzene	110	60-140

Pace

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

 Lab Number:
 L2513026

 Report Date:
 03/09/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborou	igh Lab Associat	ed sample(s)	: 01-06 Batch	: WG203	8128-3				
Toluene	115	,	-		70-130	-		41	
2-Butanone	78		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	95		60-140
Fluorobenzene	90		60-140
4-Bromofluorobenzene	112		60-140

METALS

Project Name: Project Number:		SPS TECHNOLOGIES US0043268.2150 L2513026-01 SW5_030725 JENKINTOWN, PA			SAMPLE RESULTS			Lab Number: Report Date:		26 5	
Lab ID: Client ID: Sample Location:	SW5_0							llected: ceived: ep:	03/07/25 10:00 03/07/25 Not Specified		
Sample Depth: Matrix:	Water					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Manst	field Lab										
Chromium, Total	0.00043	J	mg/l	0.00100	0.00017	1	03/08/25 08:06	3 03/08/25 11:40	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00239		mg/l	0.00200	0.00055	1	03/08/25 08:06	3 03/08/25 11:40	EPA 3005A	3,200.8	MRC
Total Hardness (by o	calculatio	n) - Mansfi	eld Lab								
Hardness	159.2		mg/l	0.5400	NA	1	03/08/25 08:06	3 03/08/25 11:40	EPA 3005A	3,200.8	MRC
General Chemistry -	Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/08/25 11:40	NA	107,-	
Dissolved Metals - N	lansfield	Lab									
Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	03/09/25 14:02	2 03/09/25 18:34	EPA 3005A	3,200.8	TAA
Nickel, Dissolved	0.0018	J	mg/l	0.0020	0.0006	1	03/09/25 14:02	2 03/09/25 18:34	EPA 3005A	3,200.8	TAA

Project Name: Project Number:		SPS TECHNOLOGIES US0043268.2150			E RESI	II TS		Lab Number: Report Date:		L2513026 03/09/25	
Lab ID: Client ID: Sample Location:	SW4_	026-02 030725 NTOWN, F	PA	JAMP	0/mil (1200_10			Date Collected: Date Received: Field Prep:		03/07/25 10:25 03/07/25 Not Specified	
Sample Depth: Matrix: Parameter	Water Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Anchust
		Quanner	Units	ĸĽ	MDL						Analyst
Total Metals - Mans	field Lab										
Chromium, Total	0.00025	J	mg/l	0.00100	0.00017	1	03/08/25 08:0	6 03/08/25 11:54	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00343		mg/l	0.00200	0.00055	1	03/08/25 08:0	6 03/08/25 11:54	EPA 3005A	3,200.8	MRC
Total Hardness (by	calculatio	n) - Mansfi	eld Lab								
Hardness	212.7		mg/l	0.5400	NA	1	03/08/25 08:0	6 03/08/25 11:54	EPA 3005A	3,200.8	MRC
General Chemistry -	Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/08/25 11:54	NA	107,-	
Dissolved Metals - N	/lansfield	Lab									
Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	02/00/25 14:0	2 03/09/25 18:38		3,200.8	ТАА
		J	•								
Nickel, Dissolved	0.0028		mg/l	0.0020	0.0006	1	03/09/25 14:02	2 03/09/25 18:38	EPA 3005A	3,200.8	TAA

									_		
Project Name:	SPS T	ECHNOLO	OGIES				Lab Nu	mber:	L25130	26	
Project Number:	US004	43268.215	C				Report	Date:	03/09/2	5	
				SAMPL	E RESI	JLTS					
Lab ID:		026-03						ollected:	03/07/25		
Client ID:		030725						eceived:	03/07/25		
Sample Location:	JENKI	NTOWN, F	PA				Field Pr	ep:	Not Spec	cified	
Sample Depth:											
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Total Metals - Mans	field Lab										
Chromium, Total	0.00031	J	mg/l	0.00100	0.00017	' 1	03/08/25 08:0	6 03/08/25 11:59	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00232		mg/l	0.00200	0.00055	5 1	03/08/25 08:0	6 03/08/25 11:59	EPA 3005A	3,200.8	MRC
Total Hardness (by	calculatio	n) - Mansf	eld Lab								
Hardness	228.7		mg/l	0.5400	NA	1	03/08/25 08:0	6 03/08/25 11:59	EPA 3005A	3,200.8	MRC
General Chemistry -	- Mansfiel	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/08/25 11:59	NA	107,-	
Dissolved Metals - N	Mansfield	Lab									
Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	03/09/25 14:02	2 03/09/25 18:57	EPA 3005A	3,200.8	TAA
Nickel, Dissolved	0.0016	J	mg/l	0.0020	0.0006	1	03/09/25 14:02	2 03/09/25 18:57	EPA 3005A	3,200.8	TAA

								-	_		
Project Name:	SPS T	ECHNOLO	OGIES				Lab Nu	mber:	L25130	26	
Project Number:	US004	43268.215	D				Report	Date:	03/09/2	5	
				SAMPL	E RESI	JLTS					
Lab ID:		026-04						Date Collected:		03/07/25 12:50	
Client ID:		030725	- ^				Date Re		03/07/25		
Sample Location:	JENKI	NTOWN, F	A				Field Pr	ep:	Not Spec	cified	
Sample Depth:											
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Total Metals - Mans	field Lab										
Chromium, Total	0.00033	J	mg/l	0.00100	0.00017	1	03/08/25 08:06	6 03/08/25 12:04	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00161	J	mg/l	0.00200	0.00055	1	03/08/25 08:00	6 03/08/25 12:04	EPA 3005A	3,200.8	MRC
Total Hardness (by	calculatio	n) - Mansf	ield Lab								
Hardness	236.5		mg/l	0.5400	NA	1	03/08/25 08:00	6 03/08/25 12:04	EPA 3005A	3,200.8	MRC
General Chemistry -	- Mansfiel	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/08/25 12:04	NA	107,-	
Dissolved Metals - N	Mansfield	Lab									
Chromium, Dissolved	0.0003	J	mg/l	0.0010	0.0002	1	03/09/25 14:02	2 03/09/25 19:01	EPA 3005A	3,200.8	TAA
Nickel, Dissolved	0.0011	J	mg/l	0.0020	0.0006	1	03/09/25 14:02	2 03/09/25 19:01	EPA 3005A	3,200.8	TAA

								-	_		
Project Name:	SPS T	ECHNOLO	OGIES				Lab Nu	mber:	L25130	26	
Project Number:	US004	43268.215	0				Report	Date:	03/09/2	5	
Lab ID: Client ID: Sample Location:	SW1_	026-05 030725 NTOWN, F	PA	SAMPL	E RESU	JLTS		ollected: eceived: ep:	03/07/25 03/07/25 Not Spec		
Sample Depth: Matrix:	Water								_	A	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Chromium, Total	0.00024	J	mg/l	0.00100	0.00017	· 1	03/08/25 08:0	6 03/08/25 12:09	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00484		mg/l	0.00200	0.00055	1	03/08/25 08:0	6 03/08/25 12:09	EPA 3005A	3,200.8	MRC
Total Hardness (by	calculatio	n) - Mansf	ield Lab								
Hardness	271.0		mg/l	0.5400	NA	1	03/08/25 08:0	6 03/08/25 12:09	EPA 3005A	3,200.8	MRC
General Chemistry -	Mansfiel	ld I ab									
Chromium, Trivalent	ND		mg/l	0.010	0.003	1		03/08/25 12:09	NA	107,-	
			iiig/i	0.010	0.003	I		05/06/25 12.09		107,	
Dissolved Metals - N	Mansfield	Lab									
Chromium, Dissolved	0.0002	J	mg/l	0.0010	0.0002	1	03/09/25 14:02	2 03/09/25 19:07	EPA 3005A	3,200.8	TAA
Nickel, Dissolved	0.0037		mg/l	0.0020	0.0006	1	03/09/25 14:02	2 03/09/25 19:07	EPA 3005A	3,200.8	TAA

Project Name:SPS TECHNOLOGIESProject Number:US0043268.2150

 Lab Number:
 L2513026

 Report Date:
 03/09/25

Method Blank Analysis Batch Quality Control

Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample	(s): 01-05 E	Batch: WO	G203804	43-1				
Chromium, Total	ND	mg/l	0.00100	0.00017	[′] 1	03/08/25 08:06	03/08/25 11:31	3,200.8	MRC
Nickel, Total	ND	mg/l	0.00200	0.00055	1	03/08/25 08:06	03/08/25 11:31	3,200.8	MRC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness (by ca	alculation) - Mansfield	Lab for sa	ample(s):	01-05	Batch: WC	G2038043-1			
Hardness	ND	mg/l	0.5400	NA	1	03/08/25 08:06	03/08/25 11:31	3,200.8	MRC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	ansfield Lab	for sample(s): 01-05	Batch	WG2	038295-1				
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	03/09/25 14:02	03/09/25 17:59	3,200.8	TAA
Nickel, Dissolved	ND		mg/l	0.0020	0.0006	1	03/09/25 14:02	03/09/25 17:59	3,200.8	TAA

Prep Information

Digestion Method: EPA 3005A

Pace

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES Lab Number: L2513026 Report Date: 03/09/25

Project Number: US0043268.2150

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sam	ple(s): 01-05	Batch: W	G2038043-2					
Chromium, Total	99		-		85-115	-		
Nickel, Total	106		-		85-115	-		
Total Hardness (by calculation) - Mansfield La	b Associated	sample(s)	: 01-05 Batch: \	VG2038043	-2			
Hardness	100		-		85-115	-		
Dissolved Metals - Mansfield Lab Associated	sample(s): 01-	05 Batc	h: WG2038295-2					
Chromium, Dissolved	101		-		85-115	-		
Nickel, Dissolved	103		-		85-115	-		

Pace

Matrix Spike Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

 Lab Number:
 L2513026

 Report Date:
 03/09/25

Parameter	Native Sample	MS Added	MS Found ^o	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD		RPD Limits
Total Metals - Mansfield L	ab Associated sam	ple(s): 01-05	QC Batc	h ID: WG2038	3043-3	QC Samp	le: L2513026-	01 CI	ient ID: SW	5_030	725	
Chromium, Total	0.00043J	0.2	0.2008	100		-	-		70-130	-		20
Nickel, Total	0.00239	0.5	0.5169	103		-	-		70-130	-		20
Total Hardness (by calcula SW5_030725	ation) - Mansfield La	ab Associate	d sample(s): 01-05 QC	Batch II	D: WG2038	043-3 QC S	ample:	L2513026-	01 C	lient ID:	
Hardness	159.2	66.2	234.0	113		-	-		70-130	-		20
Dissolved Metals - Mansfi Sample	eld Lab Associated	sample(s): 0	1-05 QC	Batch ID: WG	203829	5-3 WG203	38295-4 QC	Sample	: L2513207	-02 C	Client ID:	MS
Chromium, Dissolved												
	ND	0.2	0.1996	100		0.1941	97		70-130	3		20
Nickel, Dissolved	ND 0.0026	0.2 0.5	0.1996 0.4965	100 99		0.1941 0.4889	97 97		70-130 70-130	3 2		20 20
Nickel, Dissolved	0.0026	0.5	0.4965		203829	0.4889		207-03	70-130	2	Sample	
	0.0026	0.5	0.4965	99	203829	0.4889	97	207-03	70-130	2	Sample	

Pace

Lab Duplicate Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number: L2513026 Report Date: 03/09/25

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	5 QC Batch ID: WC	G2038043-4 QC Sample:	L2513026-01	Client ID:	SW5_030725
Chromium, Total	0.00043J	0.00047J	mg/l	NC	20
Nickel, Total	0.00239	0.00235	mg/l	1	20
Total Hardness (by calculation) - Mansfield Lab Associate SW5_030725	ed sample(s): 01-05	QC Batch ID: WG203804	13-4 QC Sam	ple: L2513	3026-01 Client ID:
Hardness	159.2	164.6	mg/l	3	20
Dissolved Metals - Mansfield Lab Associated sample(s):	01-05 QC Batch ID	: WG2038295-6 QC Sar	nple: L251320	7-03 Clien	t ID: DUP Sample
Chromium, Dissolved	0.0002J	0.0003J	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Lab Number: SPS TECHNOLOGIES L2513026 Project Number: US0043268.2150 Report Date: 03/09/25

SAMPLE RESULTS

Sample Depth: Matrix: Parameter	Water	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Sample Location:	JENKINTO	WN, PA					Field F	Prep:	Not Specified	
Lab ID: Client ID:	L2513026-0 SW5_0307	-						Collected: Received:	03/07/25 10:00 03/07/25)

General Chemistry - We	stborough Lab								
Cyanide, Total	ND	mg/l	0.005	0.001	1	03/08/25 07:45	03/08/25 10:39	121,4500CN-CE	JER
Cyanide, Free	ND	mg/l	0.010	0.003	1	-	03/08/25 07:26	121,4500CN-	KAF
Oil & Grease, Hem-Grav	ND	mg/l	4.4	4.4	1.1	03/08/25 11:13	03/08/25 15:52	E(M) 140,1664B	IYM
Chromium, Hexavalent	ND	mg/l	0.010	0.003	1	03/08/25 08:34	03/08/25 08:52	121,3500CR-B	DMO

Project Name:

03/08/25 08:34 03/08/25 08:53 121,3500CR-B

DMO

 Project Name:
 SPS TECHNOLOGIES
 Lab Number:
 L2513026

 Project Number:
 US0043268.2150
 Report Date:
 03/09/25

 SAMPLE RESULTS
 SAMPLE RESULTS
 Comparison of the state of th

Lab ID: Client ID: Sample Location:	L2513026-0 SW4_03072 JENKINTO	25						Received: (03/07/25 10:25 03/07/25 Not Specified	
Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Cyanide, Total	0.002	J	mg/l	0.005	0.001	1	03/08/25 07:45	03/08/25 10:44	121,4500CN-CE	JER
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/08/25 07:26	,	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/08/25 11:13	03/08/25 15:53	E(M) 3 140,1664B	IYM

0.003

1

0.010

mg/l

Chromium, Hexavalent

ND

 Project Name:
 SPS TECHNOLOGIES
 Lab Number:
 L2513026

 Project Number:
 US0043268.2150
 Report Date:
 03/09/25

 SAMPLE RESULTS
 SAMPLE RESULTS
 Comparison of the second sec

Lab ID: Client ID: Sample Location:	L2513026-03 SW3_03072 JENKINTOV	5						eceived: 0	03/07/25 11:35 03/07/25 Not Specified	
Sample Depth: Matrix:	Water					Dilution	Date	Dete	Anglatical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab)								
Cyanide, Total	0.002	J	mg/l	0.005	0.001	1	03/08/25 07:45	03/08/25 10:45	121,4500CN-CE	JER

Cyanide, Free	ND	mg/l	0.010	0.003	1	-	03/08/25 07:26	121,4500CN-	KAF
Oil & Grease, Hem-Grav	ND	mg/l	4.0	4.0	1	03/08/25 11:13	03/08/25 15:58	E(M) 140,1664B	IYM
Chromium, Hexavalent	ND	mg/l	0.010	0.003	1	03/08/25 08:34	03/08/25 08:54	121,3500CR-B	DMO

Serial No:03092	521:02
-----------------	--------

Project Name:SPS TECHNOLOGIESLab Number:L2513026Project Number:US0043268.2150Report Date:03/09/25SAMPLE RESULTS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Sample Depth: Matrix:	Water									
Lab ID: Client ID: Sample Location:	L2513026-0 SW2_03072 JENKINTOV	25						collected: leceived: rep:	03/07/25 12:50 03/07/25 Not Specified	

General Chemistry - we	Siborougri Lai	J							
Cyanide, Total	ND	mg/l	0.005	0.001	1	03/08/25 07:45	03/08/25 10:46	121,4500CN-CE	JER
Cyanide, Free	ND	mg/l	0.010	0.003	1	-	03/08/25 07:26	121,4500CN- E(M)	KAF
Oil & Grease, Hem-Grav	ND	mg/l	4.4	4.4	1.1	03/08/25 11:13	03/08/25 15:59	140,1664B	IYM
Chromium, Hexavalent	ND	mg/l	0.010	0.003	1	03/08/25 08:34	03/08/25 08:55	121,3500CR-B	DMO

Seliai 110.03092321.02	Serial	No:03092521:02
------------------------	--------	----------------

Project Name:SPS TECHNOLOGIESLab Number:L2513026Project Number:US0043268.2150Report Date:03/09/25SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L2513026-05 SW1_030725 JENKINTOWN, PA				Date Coll Date Rec Field Pre	ceived:	03/07/25 13:20 03/07/25 Not Specified	
Sample Depth: Matrix:	Water		-		Date	Date	Analytical	
Parameter	Result Qualifier Units	RL	MDL Fa	actor Pr	repared	Analyzed	Method	Analyst

General Chemistry - We	stborough La	ab								
Cyanide, Total	0.001	J	mg/l	0.005	0.001	1	03/08/25 07:45	03/08/25 10:47	121,4500CN-CE	JER
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/08/25 07:26	121,4500CN-	KAF
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/08/25 11:13	03/08/25 16:00	E(M) 140,1664B	IYM
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/08/25 08:34	03/08/25 08:58	121,3500CR-B	DMO

Project Name:SPS TECHNOLOGIESProject Number:US0043268.2150

 Lab Number:
 L2513026

 Report Date:
 03/09/25

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method A	Analyst
General Chemistry - Westl	porough Lab for sam	ple(s): 01	-05 Bat	tch: WC	G2038022-	1			
Cyanide, Total	ND	mg/l	0.005	0.001	1	03/08/25 07:45	03/08/25 10:35	121,4500CN-CE	JER
General Chemistry - Westl	porough Lab for sam	ple(s): 01	-05 Bat	tch: WC	G2038028-	1			
Cyanide, Free	ND	mg/l	0.010	0.003	1	-	03/08/25 07:26	121,4500CN-E(M) KAF
General Chemistry - Westl	porough Lab for sam	ple(s): 01	-05 Bat	tch: WC	G2038046-	1			
Chromium, Hexavalent	ND	mg/l	0.010	0.003	1	03/08/25 08:34	03/08/25 08:50	121,3500CR-B	DMO
General Chemistry - Westl	oorough Lab for sam	ple(s): 01	-05 Bat	tch: WC	G2038095-	1			
Oil & Grease, Hem-Grav	ND	mg/l	4.0	4.0	1	03/08/25 11:13	03/08/25 15:30	140,1664B	IYM

Lab Control Sample Analysis Batch Quality Control

Project Name:SPS TECHNOLOGIESProject Number:US0043268.2150

 Lab Number:
 L2513026

 Report Date:
 03/09/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Asso	ciated sample(s)): 01-05	Batch: WG2038	022-2				
Cyanide, Total	94		-		90-110	-		
General Chemistry - Westborough Lab Asso	ciated sample(s)): 01-05	Batch: WG2038	028-2				
Cyanide, Free	95		-		90-110	-		
General Chemistry - Westborough Lab Asso	ciated sample(s)): 01-05	Batch: WG2038	046-2				
Chromium, Hexavalent	103		-		85-115	-		20
General Chemistry - Westborough Lab Asso	ciated sample(s)): 01-05	Batch: WG2038	095-2				
Oil & Grease, Hem-Grav	86		-		78-114	-		18

Pace

Matrix Spike Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150 Lab Number: L2513026 **Report Date:** 03/09/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recover Qual Limits		RPD Qual Limits
General Chemistry - We	stborough Lab Asso	ciated samp	ole(s): 01-05	QC Batch II	D: WG2038022-3	QC Sample:	L2513026-01 (Client ID:	SW5_030725
Cyanide, Total	ND	0.2	0.197	98	-	-	90-110	-	30
General Chemistry - We	stborough Lab Asso	ciated samp	ole(s): 01-05	QC Batch II	D: WG2038028-4	QC Sample:	L2513027-01 (Client ID:	MS Sample
Cyanide, Free	ND	0.25	0.225	90	-	-	80-120	-	20
General Chemistry - We	stborough Lab Asso	ciated samp	ole(s): 01-05	QC Batch II	D: WG2038046-4	QC Sample:	L2513026-04 (Client ID:	SW2_030725
Chromium, Hexavalent	ND	0.1	0.097	97	-	-	85-115	-	20
General Chemistry - We	stborough Lab Asso	ciated samp	ole(s): 01-05	QC Batch II	D: WG2038095-4	QC Sample:	L2513026-02 (Client ID:	SW4_030725
Oil & Grease, Hem-Grav	ND	38.5	31	81	-	-	78-114	-	18

Pace

Lab Duplicate Analysis Batch Quality Control

Project Name:SPS TECHNOLOGIESProject Number:US0043268.2150

 Lab Number:
 L2513026

 Report Date:
 03/09/25

Parameter	Native Sa	mple C	Ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-05	QC Batch ID:	WG2038022-4	QC Sample:	L2513026-01	Client ID:	SW5_030725
Cyanide, Total	ND		ND	mg/l	NC		30
General Chemistry - Westborough Lab	Associated sample(s): 01-05	QC Batch ID:	WG2038028-3	QC Sample:	L2513027-01	Client ID:	DUP Sample
Cyanide, Free	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01-05	QC Batch ID:	WG2038046-3	QC Sample:	L2513026-04	Client ID:	SW2_030725
Chromium, Hexavalent	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01-05	QC Batch ID:	WG2038095-3	QC Sample:	L2513026-01	Client ID:	SW5_030725
Oil & Grease, Hem-Grav	ND		ND	mg/l	NC		18

Project Name: SPS TECHNOLOGIES Project Number: US0043268.2150

Serial_No:03092521:02 Lab Number: L2513026 Report Date: 03/09/25

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Present/Intact
В	Present/Intact
С	Present/Intact

Container Information

Container Information			Initial	Final	Temp			Frozen			
	Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
	L2513026-01A	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)	
	L2513026-01B	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)	
	L2513026-01C	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)	
	L2513026-01D	Plastic 250ml unpreserved	А	7	7	2.5	Y	Present/Intact		-	
	L2513026-01E	Plastic 250ml HNO3 preserved	А	<2	<2	2.5	Y	Present/Intact		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)	
	L2513026-01F	Plastic 250ml NaOH preserved	А	>12	>12	2.5	Y	Present/Intact		TCN-4500(14)	
	L2513026-01G	Plastic 500ml unpreserved	А	7	7	2.5	Y	Present/Intact		HEXCR-3500(1),FCN(1)	
	L2513026-01H	Amber 1L HCI preserved	А	NA		2.5	Y	Present/Intact		OG-1664(28)	
	L2513026-01J	Amber 1L HCI preserved	А	NA		2.5	Y	Present/Intact		OG-1664(28)	
	L2513026-01X	Plastic 120ml HNO3 preserved Filtrates	А	NA		2.5	Y	Present/Intact		CR-2008S(180),NI-2008S(180)	
	L2513026-02A	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)	
	L2513026-02B	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)	
	L2513026-02C	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)	
	L2513026-02D	Plastic 250ml unpreserved	А	7	7	2.5	Y	Present/Intact		-	
	L2513026-02E	Plastic 250ml HNO3 preserved	А	<2	<2	2.5	Y	Present/Intact		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)	
	L2513026-02F	Plastic 250ml NaOH preserved	А	>12	>12	2.5	Y	Present/Intact		TCN-4500(14)	
	L2513026-02G	Plastic 500ml unpreserved	А	7	7	2.5	Y	Present/Intact		HEXCR-3500(1),FCN(1)	
	L2513026-02H	Amber 1L HCI preserved	А	NA		2.5	Y	Present/Intact		OG-1664(28)	
	L2513026-02J	Amber 1L HCI preserved	А	NA		2.5	Y	Present/Intact		OG-1664(28)	
	L2513026-02X	Plastic 120ml HNO3 preserved Filtrates	А	NA		2.5	Y	Present/Intact		CR-2008S(180),NI-2008S(180)	

Project Name:SPS TECHNOLOGIESProject Number:US0043268.2150

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2513026-03A	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)
L2513026-03B	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)
L2513026-03C	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)
L2513026-03D	Plastic 250ml unpreserved	С	7	7	2.3	Y	Present/Intact		-
L2513026-03E	Plastic 250ml HNO3 preserved	С	<2	<2	2.3	Y	Present/Intact		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2513026-03F	Plastic 250ml NaOH preserved	С	>12	>12	2.3	Y	Present/Intact		TCN-4500(14)
L2513026-03G	Plastic 500ml unpreserved	С	7	7	2.3	Y	Present/Intact		HEXCR-3500(1),FCN(1)
L2513026-03H	Amber 1L HCI preserved	С	NA		2.3	Y	Present/Intact		OG-1664(28)
L2513026-03J	Amber 1L HCI preserved	С	NA		2.3	Y	Present/Intact		OG-1664(28)
L2513026-03X	Plastic 120ml HNO3 preserved Filtrates	С	NA		2.3	Y	Present/Intact		CR-2008S(180),NI-2008S(180)
L2513026-04A	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)
L2513026-04B	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)
L2513026-04C	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)
L2513026-04D	Plastic 250ml unpreserved	С	7	7	2.3	Y	Present/Intact		-
L2513026-04E	Plastic 250ml HNO3 preserved	С	<2	<2	2.3	Y	Present/Intact		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2513026-04F	Plastic 250ml NaOH preserved	С	>12	>12	2.3	Y	Present/Intact		TCN-4500(14)
L2513026-04G	Plastic 500ml unpreserved	С	7	7	2.3	Y	Present/Intact		HEXCR-3500(1),FCN(1)
L2513026-04H	Amber 1L HCI preserved	С	NA		2.3	Y	Present/Intact		OG-1664(28)
L2513026-04J	Amber 1L HCI preserved	С	NA		2.3	Y	Present/Intact		OG-1664(28)
L2513026-04X	Plastic 120ml HNO3 preserved Filtrates	С	NA		2.3	Y	Present/Intact		CR-2008S(180),NI-2008S(180)
L2513026-05A	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)
L2513026-05B	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)
L2513026-05C	Vial Na2S2O3 preserved	С	NA		2.3	Y	Present/Intact		624.1-PPM(7)
L2513026-05D	Plastic 250ml unpreserved	С	7	7	2.3	Y	Present/Intact		-
L2513026-05E	Plastic 250ml HNO3 preserved	С	<2	<2	2.3	Y	Present/Intact		NI-2008T(180),HARDT-2008(180),CR- 2008T(180)
L2513026-05F	Plastic 250ml NaOH preserved	С	>12	>12	2.3	Y	Present/Intact		TCN-4500(14)
L2513026-05G	Plastic 500ml unpreserved	С	7	7	2.3	Y	Present/Intact		HEXCR-3500(1),FCN(1)

Project Name:SPS TECHNOLOGIESProject Number:US0043268.2150

Serial_No:03092521:02 *Lab Number:* L2513026 *Report Date:* 03/09/25

Container Info	ormation		Initial Final		Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2513026-05H	Amber 1L HCI preserved	С	NA		2.3	Y	Present/Intact		OG-1664(28)
L2513026-05J	Amber 1L HCI preserved	С	NA		2.3	Y	Present/Intact		OG-1664(28)
L2513026-05X	Plastic 120ml HNO3 preserved Filtrates	С	NA		2.3	Y	Present/Intact		CR-2008S(180),NI-2008S(180)
L2513026-06A	Vial Na2S2O3 preserved	С	NA		2.3	Υ	Present/Intact		624.1-PPM(7)
L2513026-06B	Vial Na2S2O3 preserved	С	NA		2.3	Υ	Present/Intact		624.1-PPM(7)

Pace

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number: L2513026

Report Date: 03/09/25

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number: L2513026 Report Date: 03/09/25

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number: L2513026

Report Date: 03/09/25

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

 Lab Number:
 L2513026

 Report Date:
 03/09/25

REFERENCES

- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 107 Calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- 140 Method 1664, Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. MADEP-APH. Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048 EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048 Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

Certification IDs:

Westborough Facility – 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

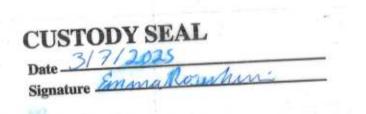
Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANÁB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility – 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.


Арна	CHAIN O	F CUST	ODY	PAGE_	_ OF _]		Date I	Rec'd	in Li	ab: 72	10	17	K	- All	100	A	L	0:03092521:02 2513026 01 DFR N	
WESTBORO, MA TEL: 508-898-9220	MANSFIELD, MA TEL: 508-822-9300	Project Info	ormation			_	Repo	122.411	215-575			10)eliv	erab	los		Billing Infor	OLDER - N.	- EI
FAX: 508-898-9193	FAX: 508-822-3288	Project Name:	SPS Tech	nologies			G FA		and a state		EMA			arau	163		Same as Clie	mation	-
Client Informati	Shifti	Project Location	n: Jenkinta					Ex				Deliv	erabl	es		F	Come as Cile	ent info PO #:	
lient: WSP		Project #:	450043		10	R	egul	atory	Rec	luire	ment	ts/Re	port	t Lin	nits				10
	ke Center Dr.	Project Manag				S	tate //	2010	rogra	m			Crit	teria					100
Suite	205, Marlton, NJ 08053	ALPHA Quote					-	PA	_		-	-							
	793-2005	Turn-Aroun	d Time		NE NE N		-	-			(a= 3)	1						and the second of the second	
nail: tovah stacy	793 - 2006 . karl @ WSp.com . mason @ WSp.com ve been previously analyzed by Alpha	Standard Date Due:		y continued it pro Time: 1				El664m	2/ 3	5/_	5/4 45cm 35 00-44	:/	Elm-	57 3	4	E200.	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1.	_
ALL VOA DISSOLVE	Specific Requirements/Comm y-Client Priviledged t rs in one cooler I metals will be lab filter	Confidenti	al	1-		/	SISA TOWN	1	- 1 H - M + 506 -		ALL ALL		Let N. Let	Shud CI	A BUT	The Fur	And and a second	Filtration Done Not needed Lab to do Preservation Lab to do	B O T
Lab Use Only)	Sample ID	Dat	Collection e Time	Sample Matrix	Sampler' Initials	s/-	5/4		The t	10/	10/10	1	3	7/5	4	0/.4	For -	(Please specify below)	TLE
10-212-01	SW5-030725	317	125 10:00	56	JES	X		X	X	×	17	12	1	h	1	1		ple Specific Comment	S S
02	564-030725	317	125 10:25	54	JET		-	Th	-	-	×	×	X	1	X	1	1	5,90	9
03	SW3-030725	31	125 11:35	SW	JET	X	X	X	×	×	x	×	N	x			1 pH	7.39	9
04	5W2-030725	317		SW	SET	X	-	X	X	-	x	×	-	-	×	X	7 pH	7.63	5
05	561-030725	3171				X	-	-	-	-	-		X	×	×	X	1 pH	8.15	٩
the	TB54-030725	3(7			JET	1	X	×	2	X	×	*	x	×	×	×	* pH	8.01	q
			14	~										X	2		1		2
1	3/8/25 0535		F		iner Type eservative	A	PX	PX	p	PC	9	P	4	V	V		Please	print clearly, legibly an Samples can not be it	d com-
ANO 01-01 (rev 14-00 age 44 of 46	- Xor	Relinquished By	n car.	3/7	2/Time 5/14:5 72:5	SA	16	Re	ceive	27 C	- 1 - 1 	3/	7/2 R 0	3/3	ate/	Time	Alpha's Ses rev	umaround time ctock v til any ambiguities are plex submitted are sub Terms and Conditions rerse side.	rill not resolved

- Contraction of the second
The
S C LEN THEO
SCIENTIFIC
90009
Thermo
SCIENTIFIC
skooge
Thomas
S C I E N T I F I C
90009
entry war in the state of the back of the
Thermo
SCIENTIFIC
9009

IC

90009

CUSTODY SEAL	
21712025	1
Signature Imma Rosen	hen

1.9.1.19

SC

EN

ANALYTICAL REPORT

Lab Number:	L2513027
Client:	WSP USA Inc.
	401 Route 73 North
	Suite 205
	Marlton, NJ 08053
ATTN:	Stacy Mason
Phone:	(856) 793-2005
Project Name:	SPS TECHNOLOGIES
Project Number:	US0043268.2150
Report Date:	03/09/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

ace

Serial_No:03092520:59

Project Name:SPS TECHNOLOGIESProject Number:US0043268.2150

 Lab Number:
 L2513027

 Report Date:
 03/09/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2513027-01	OF006_030725	WATER	JENKINTOWN, PA	03/07/25 09:10	03/07/25
L2513027-02	TBOF_030725	WATER	JENKINTOWN, PA	03/07/25 00:00	03/07/25

Project Name: SPS TECHNOLOGIES Project Number: US0043268.2150 Lab Number: L2513027 Report Date: 03/09/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: SPS TECHNOLOGIES Project Number: US0043268.2150
 Lab Number:
 L2513027

 Report Date:
 03/09/25

Case Narrative (continued)

Report Submission

March 09, 2025: This final report includes the results of all requested analyses.

March 08, 2025: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Cattlin Wallen Caitlin Walukevich

Title: Technical Director/Representative

Date: 03/09/25

, ace

ORGANICS

VOLATILES

			Serial_N	p:03092520:59
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2513027
Project Number:	US0043268.2150		Report Date:	03/09/25
		SAMPLE RESULTS		
Lab ID:	L2513027-01		Date Collected:	03/07/25 09:10
Client ID:	OF006_030725		Date Received:	03/07/25
Sample Location:	JENKINTOWN, PA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	128,624.1			
Analytical Date:	03/08/25 12:07			
Analyst:	JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			82		6	60-140
Fluorobenzene			77		6	60-140
4-Bromofluorobenzene			114		6	60-140

			Serial_N	0:03092520:59
Project Name:	SPS TECHNOLOGIES		Lab Number:	L2513027
Project Number:	US0043268.2150		Report Date:	03/09/25
		SAMPLE RESULTS		
Lab ID:	L2513027-02		Date Collected:	03/07/25 00:00
Client ID:	TBOF_030725		Date Received:	03/07/25
Sample Location:	JENKINTOWN, PA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	128,624.1			
Analytical Date:	03/08/25 08:10			
Analyst:	JKH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Toluene	ND		mg/l	0.0010	0.00031	1
2-Butanone	ND		mg/l	0.010	0.0010	1
Surrogate			% Recovery	Qualifier		ptance iteria
Pentafluorobenzene			83		6	60-140
Fluorobenzene			75		6	60-140
4-Bromofluorobenzene			114		6	0-140

 Project Name:
 SPS TECHNOLOGIES
 Lab Number:
 L2513027

 Project Number:
 US0043268.2150
 Report Date:
 03/09/25

Method Blank Analysis Batch Quality Control

Analytical Method:128,624.1Analytical Date:03/08/25 07:36Analyst:JKH

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-02 Batch:	WG2038128-4	
Toluene	ND	mg/l	0.0010	0.00031	
2-Butanone	ND	mg/l	0.010	0.0010	

		Acceptance		
Surrogate	%Recovery	Qualifier Criteria		
Pentafluorobenzene	92	60-140		
Fluorobenzene	78	60-140		
4-Bromofluorobenzene	110	60-140		

Pace

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

 Lab Number:
 L2513027

 Report Date:
 03/09/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westboro	ugh Lab Associat	ed sample(s)): 01-02 Batch	n: WG203	8128-3				
Toluene	115		-		70-130	-		41	
2-Butanone	78		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	
Pentafluorobenzene	95		60-140	
Fluorobenzene	90		60-140	
4-Bromofluorobenzene	112		60-140	

METALS

Serial_No:03092520:59

Project Name:	SPS TECHNOLOGIES		Lab Number:	L2513027
Project Number:	US0043268.2150		Report Date:	03/09/25
		SAMPLE RESULTS		
Lab ID:	L2513027-01		Date Collected:	03/07/25 09:10
Client ID:	OF006_030725		Date Received:	03/07/25
Sample Location:	JENKINTOWN, PA		Field Prep:	Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Aluminum, Total	0.01970		mg/l	0.01000	0.00327	1	03/08/25 08:06	03/08/25 12:13	EPA 3005A	3,200.8	MRC
Chromium, Total	0.00020	J	mg/l	0.00100	0.00017	1	03/08/25 08:06	03/08/25 12:13	EPA 3005A	3,200.8	MRC
Copper, Total	0.00177		mg/l	0.00100	0.00038	1	03/08/25 08:06	03/08/25 12:13	EPA 3005A	3,200.8	MRC
Iron, Total	0.1907		mg/l	0.05000	0.01910	1	03/08/25 08:06	03/08/25 12:13	EPA 3005A	3,200.8	MRC
Lead, Total	ND		mg/l	0.00100	0.00034	1	03/08/25 08:06	03/08/25 12:13	EPA 3005A	3,200.8	MRC
Nickel, Total	0.00198	J	mg/l	0.00200	0.00055	1	03/08/25 08:06	03/08/25 12:13	EPA 3005A	3,200.8	MRC
Zinc, Total	0.01586		mg/l	0.00500	0.00341	1	03/08/25 08:06	03/08/25 12:13	EPA 3005A	3,200.8	MRC
Total Hardness (b	y calculatio	n) - Mansfi	eld Lab								
Hardness	214.4		mg/l	0.5400	NA	1	03/08/25 08:06	03/08/25 12:13	EPA 3005A	3,200.8	MRC

General Chemistry	- Mansfield Lab					
Chromium, Trivalent	ND	mg/l	0.010	0.003	1	03/08/25 12:13 NA 107,-
Dissolved Metals - I	Mansfield Lab					

Chromium, Dissolved	0.0002	J	mg/l	0.0010	0.0002	1	03/09/25 14:02 03/09/25 19:12 EPA 3005A	3,200.8	TAA
Nickel, Dissolved	0.0014	J	mg/l	0.0020	0.0006	1	03/09/25 14:02 03/09/25 19:12 EPA 3005A	3,200.8	ТАА

Pace

Project Name: SPS TECHNOLOGIES Project Number: US0043268.2150
 Lab Number:
 L2513027

 Report Date:
 03/09/25

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	eld Lab for sample(s):	01 Batc	h: WG20	38043-	1				
Aluminum, Total	ND	mg/l	0.01000	0.00327	· 1	03/08/25 08:06	03/08/25 11:31	3,200.8	MRC
Chromium, Total	ND	mg/l	0.00100	0.00017	' 1	03/08/25 08:06	03/08/25 11:31	3,200.8	MRC
Copper, Total	ND	mg/l	0.00100	0.00038	8 1	03/08/25 08:06	03/08/25 11:31	3,200.8	MRC
Iron, Total	ND	mg/l	0.05000	0.01910) 1	03/08/25 08:06	03/08/25 11:31	3,200.8	MRC
Lead, Total	ND	mg/l	0.00100	0.00034	1	03/08/25 08:06	03/08/25 11:31	3,200.8	MRC
Nickel, Total	ND	mg/l	0.00200	0.00055	5 1	03/08/25 08:06	03/08/25 11:31	3,200.8	MRC
Zinc, Total	ND	mg/l	0.00500	0.00341	1	03/08/25 08:06	03/08/25 11:31	3,200.8	MRC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness (by cald	culation) - Mansfield L	ab for sa	mple(s):	01 Ba	atch: WG20)38043-1			
Hardness	ND	mg/l	0.5400	NA	1	03/08/25 08:06	03/08/25 11:31	3,200.8	MRC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	ansfield Lab	for sample	(s): 01	Batch: V	/G2038	295-1				
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	03/09/25 14:02	03/09/25 17:59	3,200.8	TAA
Nickel, Dissolved	ND		mg/l	0.0020	0.0006	1	03/09/25 14:02	03/09/25 17:59	3,200.8	TAA

Prep Information

Digestion Method: EPA 3005A

Pace

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150 Lab Number: L2513027 Report Date: 03/09/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sam	ole(s): 01 Bat	ch: WG203	38043-2					
Aluminum, Total	98		-		85-115	-		
Chromium, Total	99		-		85-115	-		
Copper, Total	106		-		85-115	-		
Iron, Total	109		-		85-115	-		
Lead, Total	98		-		85-115	-		
Nickel, Total	106		-		85-115	-		
Zinc, Total	101		-		85-115	-		
Total Hardness (by calculation) - Mansfield La	b Associated s	ample(s):	01 Batch: WG	2038043-2				
Hardness	100		-		85-115	-		
Dissolved Metals - Mansfield Lab Associated	sample(s): 01	Batch: W	G2038295-2					
Chromium, Dissolved	101		-		85-115	-		
Nickel, Dissolved	103		-		85-115	-		

Pace

Matrix Spike Analysis

Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number: L2513027 Report Date: 03/09/25

RPD Native MS MS MS MSD MSD Recovery Sample %Recovery Qual Found Limits Added Found %Recovery Qual Limits **RPD** Qual Parameter Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG2038043-3 QC Sample: L2513026-01 Client ID: MS Sample 0.070 2.042 Aluminum, Total 2 99 70-130 20 --0.2 0.2008 Chromium. Total 0.00043J 100 70-130 20 _ -_ 0.0039 0.25 0.2609 Copper, Total 103 70-130 20 _ -_ Iron, Total 0.1632 1.267 1 110 70-130 20 ---Lead. Total 0.0005J 0.53 0.5051 95 70-130 20 ---Nickel, Total 0.00239 0.5 0.5169 103 70-130 20 ---Zinc, Total 0.0100 0.5 0.5312 70-130 20 104 ---Total Hardness (by calculation) - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG2038043-3 QC Sample: L2513026-01 Client ID: MS Sample Hardness 159.2 66.2 234.0 70-130 113 20 --Dissolved Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG2038295-3 WG2038295-4 QC Sample: L2513207-02 Client ID: MS Sample Chromium, Dissolved ND 0.2 97 0.1996 100 0.1941 70-130 3 20 Nickel, Dissolved 0.0026 0.5 0.4965 0.4889 2 20 99 97 70-130 Dissolved Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG2038295-5 QC Sample: L2513207-03 Client ID: MS Sample Chromium, Dissolved 0.0002J 0.2 0.1873 70-130 94 -20 --Nickel, Dissolved 0.0013J 0.5 0.4771 95 70-130 20 ---

Lab Duplicate Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES Project Number: US0043268.2150

Lab Number: L2513027 Report Date: 03/09/25

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG	2038043-4 QC Sample: L25	13026-01 Clie	ent ID: DUF	' Sample
Chromium, Total	0.00043J	0.00047J	mg/l	NC	20
Nickel, Total	0.00239	0.00235	mg/l	1	20
Total Hardness (by calculation) - Mansfield Lab Associate	ed sample(s): 01	QC Batch ID: WG2038043-4	QC Sample:	L2513026-	01 Client ID: DUP Sample
Hardness	159.2	164.6	mg/l	3	20
Dissolved Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID:	WG2038295-6 QC Sample:	L2513207-03	B Client ID:	DUP Sample
Chromium, Dissolved	0.0002J	0.0003J	mg/l	NC	20
Nickel, Dissolved	0.0013J	0.0013J	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Serial_No:03092520:59

L2513027

03/09/25

Lab Number:

Report Date:

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

SAMPLE RESULTS

Lab ID:	L2513027-01	Date Collected:	03/07/25 09:10
Client ID:	OF006_030725	Date Received:	03/07/25
Sample Location:	JENKINTOWN, PA	Field Prep:	Not Specified
Sample Location:	JENKINTOWN, PA	Field Prep:	Not Specified

Sample Depth: Matrix:

Water

Matrix.	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
General Chemistry - We	stborough La	b								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	03/08/25 06:20	121,2540D	MRM
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/08/25 07:45	03/08/25 10:48	121,4500CN-CE	JER
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/08/25 07:26	121,4500CN-	KAF
Nitrogen, Nitrate/Nitrite	4.0		mg/l	0.10	0.046	1	-	03/08/25 07:07	E(M) 44,353.2	KAF
Chemical Oxygen Demand	13.	J	mg/l	20	6.0	1	03/08/25 11:10	03/08/25 14:58	44,410.4	CVN
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/08/25 11:13	03/08/25 16:01	140,1664B	IYM
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/08/25 08:34	03/08/25 08:59	121,3500CR-B	DMO

Project Name:SPS TECHNOLOGIESProject Number:US0043268.2150

 Lab Number:
 L2513027

 Report Date:
 03/09/25

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westbo	orough Lab	for sam	ple(s): 01	Batch:	WG20	37991-1				
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10	0.046	1	-	03/08/25 02:29	44,353.2	KAF
General Chemistry - Westbo	orough Lab	for sam	ple(s): 01	Batch:	WG20	38016-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	03/08/25 06:20	121,2540D	MRM
General Chemistry - Westbo	orough Lab	for sam	ple(s): 01	Batch:	WG20	38022-1				
Cyanide, Total	ND		mg/l	0.005	0.001	1	03/08/25 07:45	03/08/25 10:35	121,4500CN-CE	E JER
General Chemistry - Westbo	orough Lab	for sam	ple(s): 01	Batch:	WG20	38028-1				
Cyanide, Free	ND		mg/l	0.010	0.003	1	-	03/08/25 07:26	121,4500CN-E(M	/) KAF
General Chemistry - Westbo	orough Lab	for sam	ple(s): 01	Batch:	WG203	38046-1				
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	03/08/25 08:34	03/08/25 08:50	121,3500CR-B	DMO
General Chemistry - Westbo	orough Lab	for sam	ple(s): 01	Batch:	WG20	38067-1				
Chemical Oxygen Demand	ND		mg/l	20	6.0	1	03/08/25 11:10	03/08/25 14:55	44,410.4	CVN
General Chemistry - Westbo	orough Lab	for sam	ple(s): 01	Batch:	WG20	38095-1				
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/08/25 11:13	03/08/25 15:30	140,1664B	IYM

Lab Control Sample Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES Project Number: US0043268.2150 Lab Number: L2513027 Report Date: 03/09/25

%Recovery LCS LCSD %Recovery %Recovery Limits **RPD** Limits Qual RPD Parameter Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG2037991-2 Nitrogen, Nitrate/Nitrite 102 90-110 -General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG2038016-2 Solids, Total Suspended 93 80-120 General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG2038022-2 Cyanide, Total 94 90-110 -General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG2038028-2 Cyanide, Free 95 90-110 General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG2038046-2 Chromium, Hexavalent 103 85-115 20 General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG2038067-2 Chemical Oxygen Demand 99 90-110 -General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG2038095-2 Oil & Grease, Hem-Grav 86 -78-114 18

Matrix Spike Analysis Batch Quality Control

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150 Lab Number: L2513027 **Report Date:** 03/09/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Foun	INIOD	Recovery al Limits	RPD Qual	RPD Limits
General Chemistry - Westborg	ough Lab Assoc	iated samp	le(s): 01	QC Batch ID: V	NG2037991-4	QC Sample: L251268		D: MS Sam	
Nitrogen, Nitrate/Nitrite	15.	4	18	75	Q -	-	80-120	-	20
General Chemistry - Westborg	ough Lab Assoc	iated samp	le(s): 01	QC Batch ID: V	NG2038022-3	QC Sample: L251302	26-01 Client II	D: MS Sam	ole
Cyanide, Total	ND	0.2	0.197	98	-	-	90-110	-	30
General Chemistry - Westbord	ough Lab Assoc	iated samp	le(s): 01	QC Batch ID: V	NG2038028-4	QC Sample: L251302	27-01 Client II	D: OF006_0	30725
Cyanide, Free	ND	0.25	0.225	90	-	-	80-120	-	20
General Chemistry - Westbord	ough Lab Assoc	iated samp	le(s): 01	QC Batch ID: V	NG2038046-4	QC Sample: L251302	26-04 Client II	D: MS Sam	ole
Chromium, Hexavalent	ND	0.1	0.097	97	-	-	85-115	-	20
General Chemistry - Westbord	ough Lab Assoc	iated samp	le(s): 01	QC Batch ID: V	NG2038067-3	QC Sample: L251302	27-01 Client II	D: OF006_0	30725
Chemical Oxygen Demand	13.J	238	240	102	-	-	90-110	-	20
General Chemistry - Westbord	ough Lab Assoc	iated samp	le(s): 01	QC Batch ID: V	NG2038095-4	QC Sample: L251302	26-02 Client II	D: MS Sam	ole
Oil & Grease, Hem-Grav	ND	38.5	31	81	-	-	78-114	-	18

Pace

Lab Duplicate Analysis Batch Quality Control

Project Name:SPS TECHNOLOGIESProject Number:US0043268.2150

Lab Number:

 Lab Number:
 L2513027

 Report Date:
 03/09/25

Parameter	Nati	ve S	ample	Duplicate Sam	nple Unit	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG2037991-3	QC Sample:	L2512686-02	Client ID:	DUP Sample
Nitrogen, Nitrate/Nitrite		15.		15	mg/l	0		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG2038016-3	QC Sample:	L2511982-01	Client ID:	DUP Sample
Solids, Total Suspended		160	0	1700	mg/l	6		32
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG2038022-4	QC Sample:	L2513026-01	Client ID:	DUP Sample
Cyanide, Total		ND		ND	mg/l	NC		30
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG2038028-3	QC Sample:	L2513027-01	Client ID:	OF006_030725
Cyanide, Free		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG2038046-3	QC Sample:	L2513026-04	Client ID:	DUP Sample
Chromium, Hexavalent		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG2038067-4	QC Sample:	L2513027-01	Client ID:	OF006_030725
Chemical Oxygen Demand		13.	J	17.J	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG2038095-3	QC Sample:	L2513026-01	Client ID:	DUP Sample
Oil & Grease, Hem-Grav		ND		ND	mg/l	NC		18

Project Name: SPS TECHNOLOGIES Project Number: US0043268.2150

Serial_No:03092520:59 Lab Number: L2513027 Report Date: 03/09/25

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler	Custody Seal
А	Present/Intact
В	Present/Intact
С	Present/Intact

Final Initial Temp Frozen pН deg C Pres Seal Date/Time **Container Type** Cooler pH Container ID Analysis(*) L2513027-01A Vial Na2S2O3 preserved В NA 3.1 Υ Present/Intact 624.1-PPM(7) L2513027-01B Vial Na2S2O3 preserved В 3.1 Υ 624.1-PPM(7) NA Present/Intact L2513027-01C Vial Na2S2O3 preserved В NA 3.1 Υ Present/Intact 624.1-PPM(7) L2513027-01D Plastic 250ml unpreserved В 7 7 3.1 Υ Present/Intact L2513027-01E Plastic 250ml HNO3 preserved В <2 <2 3.1 Υ Present/Intact AL-2008T(180),NI-2008T(180),ZN-2008T(180),HARDT-2008(180),CU-2008T(180),FE-2008T(180),CR-2008T(180),PB-2008T(180) В L2513027-01F Plastic 250ml H2SO4 preserved <2 Υ Present/Intact NO3/NO2-353(28),COD-410(28) <2 3.1 L2513027-01G Plastic 250ml NaOH preserved В >12 >12 3.1 Υ Present/Intact TCN-4500(14) L2513027-01H Plastic 500ml unpreserved В 7 7 3.1 Υ Present/Intact HEXCR-3500(1),FCN(1) L2513027-01J Plastic 950ml unpreserved В 7 7 3.1 Υ Present/Intact TSS-2540(7) В L2513027-01K Amber 1L HCI preserved NA 3.1 Υ Present/Intact OG-1664(28) L2513027-01L Amber 1L HCI preserved В Υ NA 3.1 Present/Intact OG-1664(28) L2513027-01X Plastic 120ml HNO3 preserved Filtrates В NA 3.1 Υ Present/Intact CR-2008S(180),NI-2008S(180) L2513027-02A Vial Na2S2O3 preserved В 624.1-PPM(7) NA 3.1 Υ Present/Intact L2513027-02B Vial Na2S2O3 preserved В 3.1 Υ Present/Intact 624.1-PPM(7) NA

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number: L2513027

Report Date: 03/09/25

GLOSSARY

Acronyms

Acronyms	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number: L2513027 **Report Date:** 03/09/25

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: SPS TECHNOLOGIES

Project Number: US0043268.2150

Lab Number: L2513027

Report Date: 03/09/25

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

 Lab Number:
 L2513027

 Report Date:
 03/09/25

REFERENCES

- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- 140 Method 1664, Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. MADEP-APH. Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048 EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048 Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

Certification IDs:

Westborough Facility – 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

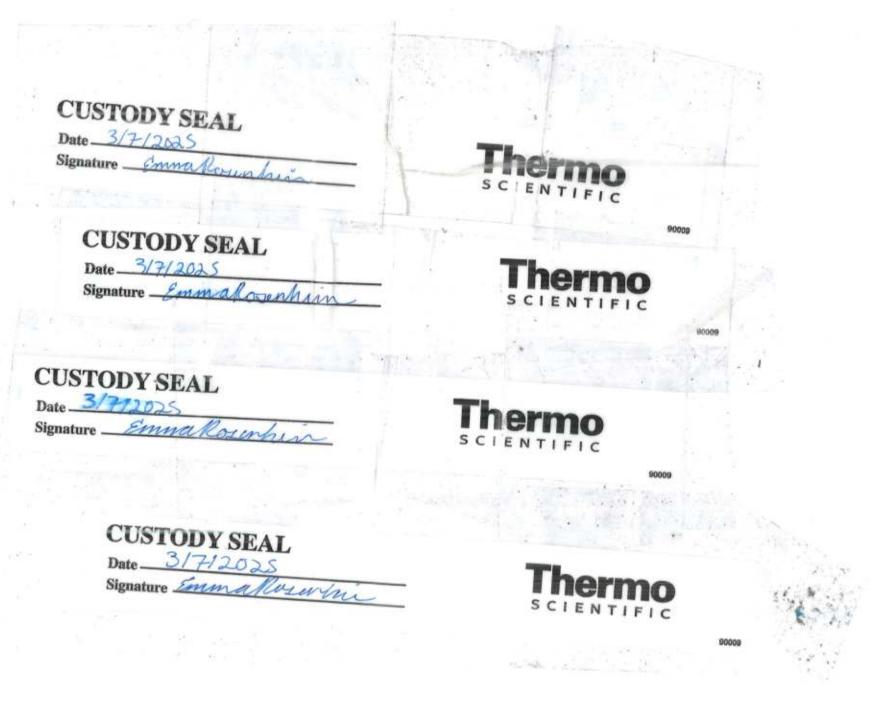
Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANÁB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility – 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

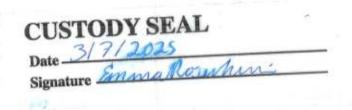

Serial No:03092520:59

Contract of the providest analyzed by Alpha Other Project Specific Requirements/Comments/Detection Limits: * Attorney - Client Priviledged + Confidential All NOAs in one coder Dissolved metals will be lab filtered ALPHA Lab ID (Lab Use Only) Sample ID Collection Sa 130227-01 OF006-030725 Sirils 317125 9:10 Sa	PA .2150	ati)	C C Reg	FAX ADEx UIEIO 9 /Fed		ram Oaks TAN	1 0	/Rep	Criter	imits ia		Same	A L2513027 GOLDER – NJ g In UNIT INFO e as Client info PO #:	
Client Information Project Location: Jenkintowh, f Client: WSP USA Inc. Project Manager: US0043268. Address: Io Lake Center Dr. Project Manager: ToVah, Karl. Suite 205, Marlton, NJ 08053 ALPHA Quote #: Project Manager: ToVah, Karl. Phone: 856 - 793 - 2005 Turn-Around Time Fax: 856 - 793 - 2006 I Standard WRUSH convocation Email: toVah.karl.@wsp.com I Standard WRUSH convocation Date Due: Time Time Date Due: Time Other Project Specific Requirements/Comments/Detection Limits: * Attorney - Client Priviledged + Confiridential All NOAs in one cooler Jusselved metals will be lab filtered Date Time M 13000-01 OF006.030725 317125 910 Sample 10 02 TBOF-030725 37125 37125 1	РА . 2150 	ati)	C Reg State	ADEx UIEIto P		ram Dats ZV	Add'l E aments		Criter	imits ia		20. C. Mad		
Client: WSP USA Inc. Project #: US0043268. Address: IO Lake Center Dr. Project Manager: ToVah, Karl Suite 205, Marlton, NJ 08053 ALPHA Quote #: Phone: $956 - 793 - 2005$ Fax: $856 - 793 - 2006$ Email: toVah.karl @WSP.com Stacy.mason @WSp.com Date Due: Tim Other Project Specific Requirements/Comments/Detection Limits: # Attorney - Client Priviledged + Confridential All NOAs in one cooler Dissolved metals will be lab filtered ALPHA Lab ID (Lab Use Only) Sample ID Collection Sa Date Time M T3302-01 OF006.030725 317125 9:10 5 02 TB0F-030725 37125 -	. 2150	ati)	Reg State	vilato 9 /Fed 9		ram Oaksty	ements	C. Rep	Criter	imits ia	1	18	3	
Address: IO Lake Center Dr. Project Manager: Tovah, Karl Suite 205, Marlton, NJ 08053 ALPHA Quote #: Phone: 856 - 793 - 2005 Turn-Around Time Fax: 856 - 793 - 2006 Standard RUSH romy continu Email: tovah, karl @ Wsp.com Standard Standard Time D These samples have been previously analyzed by Alpha Date Due: Tim Other Project Specific Requirements/Comments/Detection Limits: * Attorney - Client Priviledged + Confidential All NOAs in one cooler Dissolved metals will be lab filtered Date Time M 13002-01 OF006_030725 317125 317125 02 TBOF_030725 37125 37125	тел # pre-аррлиер	ati)	State	e /Fed	Progr	ram Oohst V	Ĺ	٢. ٤٢ ٢.	Criter	ia / 0	1	18	3	
Suite 205, Marlton, NJ 08053ALPHA Quote #:Turn-Around TimeFax: $856 - 793 - 2006Email: tovah karl @ Wsp.comStandardRUSH realy confirmedImail: tovah karl @ Wsp.comInterest StandardInterest RUSH realy confirmedImail: tovah karl @ Wsp.comInterest StandardInterest RUSH realy confirmedImail: tovah karl @ Wsp.comInterest RUSH realy confirmedInterest RUSH realy confirmedImail: tovah karl @ Wsp.comInterest RUSH realy confirmedInterest RUSH realy confirmedImail: tovah karl @ Wsp.comInterest Rush realy confirmedInterest RUSH realy confirmedImail: tovah karl @ Wsp.comInterest Rush realy confirmedInterest Rush realy confirmedImail: tovah karl @ Wsp.comInterest Rush realy confirmedInterest Rush realy confirmedImail: tovah karl @ Wsp.comInterest Rush realy confirmedInterest Rush realy confirmedImail: tovah realy will be lab filteredInterest Rush realy confirmedInterest Rush realy realy confirmedImail: tovah realy will be lab filteredInterest Rush realy realy confirmedInterest Rush realy realy realy realy realy real realy real real realy real real real real real real real real$	ний I pre-арралиев	at)		Sis	within Ethlord	V25400	1 0	T. EC 8:0	3		1	18	3	
Phone: 856 - 793 - 2005 Turn-Around Time Fax: 856 - 793 - 2006 Istandard IRUSH (out) continue Email: tovah . karl @ Wsp.com Istandard IRUSH (out) continue In these samples have been previously analyzed by Alpha Date Due: Time In these samples have been previously analyzed by Alpha Date Due: Time In these samples have been previously analyzed by Alpha Date Due: Time Other Project Specific Requirements/Comments/Detection Limits: * Attorney - Client Priviledged + Confidential All NOAs in one cooler Dissolved metrals will be lab filtered Date Time M 130020-01 OF006.030725 317125 317125 Image: Dissolved metrals 37125 37125 1000000000000000000000000000000000000			ANALV	SIS	where Ethory	E161.00	1 0	13		~/0	1	18	3	
Fax: 856 - 793 - 2006 Email: tovah.karl @ Wsp.com Stacy.mason @ Wsp.com In These samples have been previously analyzed by Alpha Date Due: In These samples have been previously analyzed by Alpha Date Due: In These samples have been previously analyzed by Alpha Date Due: In These samples have been previously analyzed by Alpha Date Due: In These samples have been previously analyzed by Alpha Date Due: In These samples have been previously analyzed by Alpha Date Due: In These samples have been previously analyzed by Alpha Date Due: In These samples have been previously analyzed by Alpha Date Due: In These samples have been previously analyzed by Alpha Date Due: In These samples have been previously analyzed by Alpha Date Due: In These samples have been previously analyzed by Alpha Date Due: In These samples have been previously analyzed by Alpha Confiridential ALL NOAs in one cooler Dissolved metals will be lab filtered In Lab Use Only) Sample ID Date Time In JONE ONE Sample ID Sample ID Sample ID In JONE In JONE Sample ID Sample ID <td></td> <td></td> <td>ANALV</td> <td>SIS - SIS</td> <td>Manual I</td> <td>Ellin Surseyed</td> <td>1 0</td> <td>13</td> <td>2</td> <td>~/o</td> <td>1</td> <td>18</td> <td>3</td> <td></td>			ANALV	SIS - SIS	Manual I	Ellin Surseyed	1 0	13	2	~/o	1	18	3	
Email: tovah.karl @ Wsp.com I Standard D RUSH outy continue In These samples have been previously analyzed by Alpha Date Due: Time In These samples have been previously analyzed by Alpha Date Due: Time In These samples have been previously analyzed by Alpha Date Due: Time In These samples have been previously analyzed by Alpha Date Due: Time In These samples have been previously analyzed by Alpha Date Due: Time In These samples have been previously analyzed by Alpha Date Due: Time Other Project Specific Requirements/Comments/Detection Limits: * Attorney - Client Priviledged + Confidential All NOAs in one cooler Dissolved metals will be lab filtered Date Time M IBOR - 030725 317125 317125 10 IBOR - 030725 37125 37125 10			ANALV	Sis -	Manual I	E16100 5412540	1 0	13	8	0	1	18	3	
Clab Use Only) Sample ID Collection Sample ID 13027-01 0F006.030725 317125 9:10 5 02 TB0F-030725 37125 - -			1.	3/		Course 1	1.	Service State	120	Lied 2200.	Themas Shreen	Alue Sura	S AMPLE HANDLING Filtration Done Not needed Lab to do Preservation	TOTAL # 801
13027.01 OF006.030725 317125 9:10 5 02 TBOF-030725 37125 -		mpler's	1	12		4	1-1		-/ -	1/1	=/1	~/~	(Please specify below)	T.
02 TBOF-030725 37125 -		nitials	5	1-0	6	2/1	(.	0/1-	100	164/1	=/4-	11-	Sample Specific Comments	E S
	50 3	SET	\propto	2	X 3	× >	< ×	>	×	メン	X	X	pH 6.01	11
	U -	_												2
										-				
			-	-	+	+					+	-		-
			-	-	-	+			-	-	+			
			-	-	_	-	-			_				
			-	_	_	-	_			_				
				_		_				_				
	Container	r Type	p	p	AI	> p	P	7	P	PP	p	P	Please print clearly, legibly and	com-
Relinquished By:	Preserv Date/Tim		D	1 Vor	9	D C	By:	3/7	1/2	A E Dat	e/Time	0	pletely. Samples can not be log in and turnaround time clock will start until any ambiguities are re All samples submitted are subje	iged I not isolved.
Page 30 of 33	1 1 M 1 1 1	5	1	2	There) 14:5	Creek	7 /	ARO	18	5 23	0	Alpha's Terms and Conditions See reverse side	

Serial_No:03092520:59

.

A PHA	CHAIN O	Contraction of the local division of the loc	-		PAGE_2	_of	- 0	ate R	lec'd	in La	b:]	8	129	5	東北	A	LPł	HA JOD #: L251302	
WESTBORO, MA TEL: 508-898-9220	MANSFIELD, MA TEL: 508-822-9300	Project	1000	tion			F	Repo	rt Inf	orm	ation	- Da	ta Deli	verab	les			ng Information	2 /
FAX: 508-898-9193	FAX: 508-822-3288	Project Na	ame: S	ips tech	nologies			G FA	2			EMAIL			1.1201	and in case		ne as Client info PO #:	
Client Informati	entro:	Project Lo	cation:	Tenkinto	wa, PA		_	AD					elivera			-			
Client: WSP 4		Project #: US0043268,2150					Re	gula	tory	Req	uirer	nents	/Repo	rt Lin	nits				
	ke Center Dr.	Project Ma			the second se		St	ate /F	ed Pr	ograi	т		C	riteria	-23				
Suite	205, Marlton, NJ 08053	ALPHA Quote #:						_	PA	_	-	-			-				_
Phone: 856 -	793-2005	Turn-Ar	ound Ti	me		-		-						-					
Email: tovah stacy These samples ha Other Project S * Attorne Att VOA	793-2006 karl @ Wsp.com mason @ Wsp.com ve been previously analyzed by Alpha pecific Requirements/Comm y-Client Priviledged f s in one cooler metals will be lab filte	t Confide	ection L		frontinned if pro-		ANA	Chrone Sis		1 [2000	E.C. Junition Flora	100	111-11-11-1	24 2 2 4 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2	617 1	1	1	SAMPLE HANDLING Filtration Done Not needed Lab to do Preservation	T OTAL ₩ BO
ALPHA Lab ID (Lab Use Only)	Sample ID	_	Colle	ection Time	Sample Matrix	Sampler's Initials	17.	-/	D. I.	A T A		1-1-1	tere .	1 /		/	/	(Please specify below)	BOTTLE
13027 01	OF006 030725	3	5217125	9:10	SW	SU	×	X	X	×	×	×	x	+	(\leftarrow	/	/ Sample Specific Comments	E S
02	TBOF-030725	1	217125	_	W	-	-		-	a	X	-	~	+	-			pH 6.01	11
a share a share							-	-		17	<u> </u>			-					5
A STATE AND							-	-		-			_	-					
THE R. L. STREET					-		-										1		
A SA TO LOR T					1														1
								1											1
and the														1		-	-		+-
													+						-
A Destroy														1		+			-
											-	-		-		-	-1		-
				r															
1-3	18/25 0535				200401-01	iner Type	P	8	-	V	V		P					Please print clearly, legibly and co	om-
/	1	Relighuishe	d By	_	1	servative	C	×.	A	5	14		4					pletely. Samples can not be logg in and turnaround time clock will r	ped .
	-HEK	.W.	1.0.07.		3/7/25	Time	7	21	Rec	ceive	d By:	/	5/11	1	Date/	Time	1	start until any ambiguities are real All samples submitted are subject	nivari
RM NO: 01-01 (rev. 14-00	T-07)	in	×		3/7/	25	16	1 m	-	P	4 (-	1 .	>/1/	as n	1/9	1.5	5	Alpha's Terms and Conditions	to
Page 31 of 33	Santa	Cz0	reen		31-1			3	nth	an	1.2	reen	2 MAR	07	2025	12	3	See reverse side.	1



IC

90009

90009

CUST	DY SEAL
Date 315	Emma Rosenhin

14

SC

EN